Metamath Proof Explorer


Theorem mulsucdiv2z

Description: An integer multiplied with its successor divided by 2 yields an integer, i.e. an integer multiplied with its successor is even. (Contributed by AV, 19-Jul-2021)

Ref Expression
Assertion mulsucdiv2z N N N + 1 2

Proof

Step Hyp Ref Expression
1 zeo N N 2 N + 1 2
2 peano2z N N + 1
3 zmulcl N 2 N + 1 N 2 N + 1
4 2 3 sylan2 N 2 N N 2 N + 1
5 zcn N N
6 2 zcnd N N + 1
7 2cnne0 2 2 0
8 7 a1i N 2 2 0
9 div23 N N + 1 2 2 0 N N + 1 2 = N 2 N + 1
10 5 6 8 9 syl3anc N N N + 1 2 = N 2 N + 1
11 10 eleq1d N N N + 1 2 N 2 N + 1
12 11 adantl N 2 N N N + 1 2 N 2 N + 1
13 4 12 mpbird N 2 N N N + 1 2
14 13 ex N 2 N N N + 1 2
15 zmulcl N N + 1 2 N N + 1 2
16 15 ancoms N + 1 2 N N N + 1 2
17 divass N N + 1 2 2 0 N N + 1 2 = N N + 1 2
18 5 6 8 17 syl3anc N N N + 1 2 = N N + 1 2
19 18 eleq1d N N N + 1 2 N N + 1 2
20 19 adantl N + 1 2 N N N + 1 2 N N + 1 2
21 16 20 mpbird N + 1 2 N N N + 1 2
22 21 ex N + 1 2 N N N + 1 2
23 14 22 jaoi N 2 N + 1 2 N N N + 1 2
24 1 23 mpcom N N N + 1 2