Metamath Proof Explorer


Theorem mulsunif2

Description: Alternate expression for surreal multiplication. Note from Conway p. 19. (Contributed by Scott Fenton, 16-Mar-2025)

Ref Expression
Hypotheses mulsunif2.1 φ L s R
mulsunif2.2 φ M s S
mulsunif2.3 φ A = L | s R
mulsunif2.4 φ B = M | s S
Assertion mulsunif2 φ A s B = a | p L q M a = A s B - s A - s p s B - s q b | r R s S b = A s B - s r - s A s s - s B | s c | t L u S c = A s B + s A - s t s u - s B d | v R w M d = A s B + s v - s A s B - s w

Proof

Step Hyp Ref Expression
1 mulsunif2.1 φ L s R
2 mulsunif2.2 φ M s S
3 mulsunif2.3 φ A = L | s R
4 mulsunif2.4 φ B = M | s S
5 1 2 3 4 mulsunif2lem φ A s B = e | i L j M e = A s B - s A - s i s B - s j f | k R l S f = A s B - s k - s A s l - s B | s g | m L n S g = A s B + s A - s m s n - s B h | o R x M h = A s B + s o - s A s B - s x
6 eqeq1 e = a e = A s B - s A - s i s B - s j a = A s B - s A - s i s B - s j
7 6 2rexbidv e = a i L j M e = A s B - s A - s i s B - s j i L j M a = A s B - s A - s i s B - s j
8 oveq2 i = p A - s i = A - s p
9 8 oveq1d i = p A - s i s B - s j = A - s p s B - s j
10 9 oveq2d i = p A s B - s A - s i s B - s j = A s B - s A - s p s B - s j
11 10 eqeq2d i = p a = A s B - s A - s i s B - s j a = A s B - s A - s p s B - s j
12 oveq2 j = q B - s j = B - s q
13 12 oveq2d j = q A - s p s B - s j = A - s p s B - s q
14 13 oveq2d j = q A s B - s A - s p s B - s j = A s B - s A - s p s B - s q
15 14 eqeq2d j = q a = A s B - s A - s p s B - s j a = A s B - s A - s p s B - s q
16 11 15 cbvrex2vw i L j M a = A s B - s A - s i s B - s j p L q M a = A s B - s A - s p s B - s q
17 7 16 bitrdi e = a i L j M e = A s B - s A - s i s B - s j p L q M a = A s B - s A - s p s B - s q
18 17 cbvabv e | i L j M e = A s B - s A - s i s B - s j = a | p L q M a = A s B - s A - s p s B - s q
19 eqeq1 f = b f = A s B - s k - s A s l - s B b = A s B - s k - s A s l - s B
20 19 2rexbidv f = b k R l S f = A s B - s k - s A s l - s B k R l S b = A s B - s k - s A s l - s B
21 oveq1 k = r k - s A = r - s A
22 21 oveq1d k = r k - s A s l - s B = r - s A s l - s B
23 22 oveq2d k = r A s B - s k - s A s l - s B = A s B - s r - s A s l - s B
24 23 eqeq2d k = r b = A s B - s k - s A s l - s B b = A s B - s r - s A s l - s B
25 oveq1 l = s l - s B = s - s B
26 25 oveq2d l = s r - s A s l - s B = r - s A s s - s B
27 26 oveq2d l = s A s B - s r - s A s l - s B = A s B - s r - s A s s - s B
28 27 eqeq2d l = s b = A s B - s r - s A s l - s B b = A s B - s r - s A s s - s B
29 24 28 cbvrex2vw k R l S b = A s B - s k - s A s l - s B r R s S b = A s B - s r - s A s s - s B
30 20 29 bitrdi f = b k R l S f = A s B - s k - s A s l - s B r R s S b = A s B - s r - s A s s - s B
31 30 cbvabv f | k R l S f = A s B - s k - s A s l - s B = b | r R s S b = A s B - s r - s A s s - s B
32 18 31 uneq12i e | i L j M e = A s B - s A - s i s B - s j f | k R l S f = A s B - s k - s A s l - s B = a | p L q M a = A s B - s A - s p s B - s q b | r R s S b = A s B - s r - s A s s - s B
33 eqeq1 g = c g = A s B + s A - s m s n - s B c = A s B + s A - s m s n - s B
34 33 2rexbidv g = c m L n S g = A s B + s A - s m s n - s B m L n S c = A s B + s A - s m s n - s B
35 oveq2 m = t A - s m = A - s t
36 35 oveq1d m = t A - s m s n - s B = A - s t s n - s B
37 36 oveq2d m = t A s B + s A - s m s n - s B = A s B + s A - s t s n - s B
38 37 eqeq2d m = t c = A s B + s A - s m s n - s B c = A s B + s A - s t s n - s B
39 oveq1 n = u n - s B = u - s B
40 39 oveq2d n = u A - s t s n - s B = A - s t s u - s B
41 40 oveq2d n = u A s B + s A - s t s n - s B = A s B + s A - s t s u - s B
42 41 eqeq2d n = u c = A s B + s A - s t s n - s B c = A s B + s A - s t s u - s B
43 38 42 cbvrex2vw m L n S c = A s B + s A - s m s n - s B t L u S c = A s B + s A - s t s u - s B
44 34 43 bitrdi g = c m L n S g = A s B + s A - s m s n - s B t L u S c = A s B + s A - s t s u - s B
45 44 cbvabv g | m L n S g = A s B + s A - s m s n - s B = c | t L u S c = A s B + s A - s t s u - s B
46 eqeq1 h = d h = A s B + s o - s A s B - s x d = A s B + s o - s A s B - s x
47 46 2rexbidv h = d o R x M h = A s B + s o - s A s B - s x o R x M d = A s B + s o - s A s B - s x
48 oveq1 o = v o - s A = v - s A
49 48 oveq1d o = v o - s A s B - s x = v - s A s B - s x
50 49 oveq2d o = v A s B + s o - s A s B - s x = A s B + s v - s A s B - s x
51 50 eqeq2d o = v d = A s B + s o - s A s B - s x d = A s B + s v - s A s B - s x
52 oveq2 x = w B - s x = B - s w
53 52 oveq2d x = w v - s A s B - s x = v - s A s B - s w
54 53 oveq2d x = w A s B + s v - s A s B - s x = A s B + s v - s A s B - s w
55 54 eqeq2d x = w d = A s B + s v - s A s B - s x d = A s B + s v - s A s B - s w
56 51 55 cbvrex2vw o R x M d = A s B + s o - s A s B - s x v R w M d = A s B + s v - s A s B - s w
57 47 56 bitrdi h = d o R x M h = A s B + s o - s A s B - s x v R w M d = A s B + s v - s A s B - s w
58 57 cbvabv h | o R x M h = A s B + s o - s A s B - s x = d | v R w M d = A s B + s v - s A s B - s w
59 45 58 uneq12i g | m L n S g = A s B + s A - s m s n - s B h | o R x M h = A s B + s o - s A s B - s x = c | t L u S c = A s B + s A - s t s u - s B d | v R w M d = A s B + s v - s A s B - s w
60 32 59 oveq12i e | i L j M e = A s B - s A - s i s B - s j f | k R l S f = A s B - s k - s A s l - s B | s g | m L n S g = A s B + s A - s m s n - s B h | o R x M h = A s B + s o - s A s B - s x = a | p L q M a = A s B - s A - s p s B - s q b | r R s S b = A s B - s r - s A s s - s B | s c | t L u S c = A s B + s A - s t s u - s B d | v R w M d = A s B + s v - s A s B - s w
61 5 60 eqtrdi φ A s B = a | p L q M a = A s B - s A - s p s B - s q b | r R s S b = A s B - s r - s A s s - s B | s c | t L u S c = A s B + s A - s t s u - s B d | v R w M d = A s B + s v - s A s B - s w