Step |
Hyp |
Ref |
Expression |
1 |
|
mulsunif2.1 |
|
2 |
|
mulsunif2.2 |
|
3 |
|
mulsunif2.3 |
|
4 |
|
mulsunif2.4 |
|
5 |
1 2 3 4
|
mulsunif |
|
6 |
1
|
scutcld |
|
7 |
3 6
|
eqeltrd |
|
8 |
2
|
scutcld |
|
9 |
4 8
|
eqeltrd |
|
10 |
7 9
|
mulscld |
|
11 |
10
|
adantr |
|
12 |
|
ssltss1 |
|
13 |
1 12
|
syl |
|
14 |
13
|
sselda |
|
15 |
14
|
adantrr |
|
16 |
9
|
adantr |
|
17 |
15 16
|
mulscld |
|
18 |
7
|
adantr |
|
19 |
|
ssltss1 |
|
20 |
2 19
|
syl |
|
21 |
20
|
sselda |
|
22 |
21
|
adantrl |
|
23 |
18 22
|
mulscld |
|
24 |
15 22
|
mulscld |
|
25 |
23 24
|
subscld |
|
26 |
11 17 25
|
subsubs4d |
|
27 |
26
|
oveq2d |
|
28 |
17 25
|
addscld |
|
29 |
11 28
|
nncansd |
|
30 |
27 29
|
eqtrd |
|
31 |
18 15
|
subscld |
|
32 |
31 16 22
|
subsdid |
|
33 |
18 15 16
|
subsdird |
|
34 |
18 15 22
|
subsdird |
|
35 |
33 34
|
oveq12d |
|
36 |
32 35
|
eqtrd |
|
37 |
36
|
oveq2d |
|
38 |
17 23 24
|
addsubsassd |
|
39 |
30 37 38
|
3eqtr4rd |
|
40 |
39
|
eqeq2d |
|
41 |
40
|
2rexbidva |
|
42 |
41
|
abbidv |
|
43 |
10
|
adantr |
|
44 |
|
ssltss2 |
|
45 |
1 44
|
syl |
|
46 |
45
|
sselda |
|
47 |
46
|
adantrr |
|
48 |
|
ssltss2 |
|
49 |
2 48
|
syl |
|
50 |
49
|
sselda |
|
51 |
50
|
adantrl |
|
52 |
47 51
|
mulscld |
|
53 |
7
|
adantr |
|
54 |
53 51
|
mulscld |
|
55 |
52 54
|
subscld |
|
56 |
9
|
adantr |
|
57 |
47 56
|
mulscld |
|
58 |
57 43
|
subscld |
|
59 |
43 55 58
|
subsubs2d |
|
60 |
43 58 55
|
addsubsassd |
|
61 |
|
pncan3s |
|
62 |
43 57 61
|
syl2anc |
|
63 |
62
|
oveq1d |
|
64 |
59 60 63
|
3eqtr2d |
|
65 |
47 53
|
subscld |
|
66 |
65 51 56
|
subsdid |
|
67 |
47 53 51
|
subsdird |
|
68 |
47 53 56
|
subsdird |
|
69 |
67 68
|
oveq12d |
|
70 |
66 69
|
eqtrd |
|
71 |
70
|
oveq2d |
|
72 |
57 54 52
|
addsubsassd |
|
73 |
57 52 54
|
subsubs2d |
|
74 |
72 73
|
eqtr4d |
|
75 |
64 71 74
|
3eqtr4rd |
|
76 |
75
|
eqeq2d |
|
77 |
76
|
2rexbidva |
|
78 |
77
|
abbidv |
|
79 |
42 78
|
uneq12d |
|
80 |
7
|
adantr |
|
81 |
49
|
sselda |
|
82 |
81
|
adantrl |
|
83 |
80 82
|
mulscld |
|
84 |
10
|
adantr |
|
85 |
83 84
|
subscld |
|
86 |
13
|
sselda |
|
87 |
86
|
adantrr |
|
88 |
87 82
|
mulscld |
|
89 |
9
|
adantr |
|
90 |
87 89
|
mulscld |
|
91 |
85 88 90
|
subsubs2d |
|
92 |
90 88
|
subscld |
|
93 |
83 92 84
|
addsubsd |
|
94 |
91 93
|
eqtr4d |
|
95 |
94
|
oveq2d |
|
96 |
83 92
|
addscld |
|
97 |
|
pncan3s |
|
98 |
84 96 97
|
syl2anc |
|
99 |
95 98
|
eqtrd |
|
100 |
82 89
|
subscld |
|
101 |
80 87 100
|
subsdird |
|
102 |
80 82 89
|
subsdid |
|
103 |
87 82 89
|
subsdid |
|
104 |
102 103
|
oveq12d |
|
105 |
101 104
|
eqtrd |
|
106 |
105
|
oveq2d |
|
107 |
90 83
|
addscomd |
|
108 |
107
|
oveq1d |
|
109 |
83 90 88
|
addsubsassd |
|
110 |
108 109
|
eqtrd |
|
111 |
99 106 110
|
3eqtr4rd |
|
112 |
111
|
eqeq2d |
|
113 |
112
|
2rexbidva |
|
114 |
113
|
abbidv |
|
115 |
45
|
sselda |
|
116 |
115
|
adantrr |
|
117 |
9
|
adantr |
|
118 |
116 117
|
mulscld |
|
119 |
20
|
sselda |
|
120 |
119
|
adantrl |
|
121 |
116 120
|
mulscld |
|
122 |
118 121
|
subscld |
|
123 |
10
|
adantr |
|
124 |
7
|
adantr |
|
125 |
124 120
|
mulscld |
|
126 |
122 123 125
|
subsubs2d |
|
127 |
122 125 123
|
addsubsassd |
|
128 |
126 127
|
eqtr4d |
|
129 |
128
|
oveq2d |
|
130 |
122 125
|
addscld |
|
131 |
|
pncan3s |
|
132 |
123 130 131
|
syl2anc |
|
133 |
129 132
|
eqtrd |
|
134 |
117 120
|
subscld |
|
135 |
116 124 134
|
subsdird |
|
136 |
116 117 120
|
subsdid |
|
137 |
124 117 120
|
subsdid |
|
138 |
136 137
|
oveq12d |
|
139 |
135 138
|
eqtrd |
|
140 |
139
|
oveq2d |
|
141 |
118 125 121
|
addsubsd |
|
142 |
133 140 141
|
3eqtr4rd |
|
143 |
142
|
eqeq2d |
|
144 |
143
|
2rexbidva |
|
145 |
144
|
abbidv |
|
146 |
114 145
|
uneq12d |
|
147 |
79 146
|
oveq12d |
|
148 |
5 147
|
eqtrd |
|