Metamath Proof Explorer


Theorem mulsunif2lem

Description: Lemma for mulsunif2 . State the theorem with extra disjoint variable conditions. (Contributed by Scott Fenton, 16-Mar-2025)

Ref Expression
Hypotheses mulsunif2.1 φ L s R
mulsunif2.2 φ M s S
mulsunif2.3 φ A = L | s R
mulsunif2.4 φ B = M | s S
Assertion mulsunif2lem φ A s B = a | p L q M a = A s B - s A - s p s B - s q b | r R s S b = A s B - s r - s A s s - s B | s c | t L u S c = A s B + s A - s t s u - s B d | v R w M d = A s B + s v - s A s B - s w

Proof

Step Hyp Ref Expression
1 mulsunif2.1 φ L s R
2 mulsunif2.2 φ M s S
3 mulsunif2.3 φ A = L | s R
4 mulsunif2.4 φ B = M | s S
5 1 2 3 4 mulsunif φ A s B = a | p L q M a = p s B + s A s q - s p s q b | r R s S b = r s B + s A s s - s r s s | s c | t L u S c = t s B + s A s u - s t s u d | v R w M d = v s B + s A s w - s v s w
6 1 scutcld φ L | s R No
7 3 6 eqeltrd φ A No
8 2 scutcld φ M | s S No
9 4 8 eqeltrd φ B No
10 7 9 mulscld φ A s B No
11 10 adantr φ p L q M A s B No
12 ssltss1 L s R L No
13 1 12 syl φ L No
14 13 sselda φ p L p No
15 14 adantrr φ p L q M p No
16 9 adantr φ p L q M B No
17 15 16 mulscld φ p L q M p s B No
18 7 adantr φ p L q M A No
19 ssltss1 M s S M No
20 2 19 syl φ M No
21 20 sselda φ q M q No
22 21 adantrl φ p L q M q No
23 18 22 mulscld φ p L q M A s q No
24 15 22 mulscld φ p L q M p s q No
25 23 24 subscld φ p L q M A s q - s p s q No
26 11 17 25 subsubs4d φ p L q M A s B - s p s B - s A s q - s p s q = A s B - s p s B + s A s q - s p s q
27 26 oveq2d φ p L q M A s B - s A s B - s p s B - s A s q - s p s q = A s B - s A s B - s p s B + s A s q - s p s q
28 17 25 addscld φ p L q M p s B + s A s q - s p s q No
29 11 28 nncansd φ p L q M A s B - s A s B - s p s B + s A s q - s p s q = p s B + s A s q - s p s q
30 27 29 eqtrd φ p L q M A s B - s A s B - s p s B - s A s q - s p s q = p s B + s A s q - s p s q
31 18 15 subscld φ p L q M A - s p No
32 31 16 22 subsdid φ p L q M A - s p s B - s q = A - s p s B - s A - s p s q
33 18 15 16 subsdird φ p L q M A - s p s B = A s B - s p s B
34 18 15 22 subsdird φ p L q M A - s p s q = A s q - s p s q
35 33 34 oveq12d φ p L q M A - s p s B - s A - s p s q = A s B - s p s B - s A s q - s p s q
36 32 35 eqtrd φ p L q M A - s p s B - s q = A s B - s p s B - s A s q - s p s q
37 36 oveq2d φ p L q M A s B - s A - s p s B - s q = A s B - s A s B - s p s B - s A s q - s p s q
38 17 23 24 addsubsassd φ p L q M p s B + s A s q - s p s q = p s B + s A s q - s p s q
39 30 37 38 3eqtr4rd φ p L q M p s B + s A s q - s p s q = A s B - s A - s p s B - s q
40 39 eqeq2d φ p L q M a = p s B + s A s q - s p s q a = A s B - s A - s p s B - s q
41 40 2rexbidva φ p L q M a = p s B + s A s q - s p s q p L q M a = A s B - s A - s p s B - s q
42 41 abbidv φ a | p L q M a = p s B + s A s q - s p s q = a | p L q M a = A s B - s A - s p s B - s q
43 10 adantr φ r R s S A s B No
44 ssltss2 L s R R No
45 1 44 syl φ R No
46 45 sselda φ r R r No
47 46 adantrr φ r R s S r No
48 ssltss2 M s S S No
49 2 48 syl φ S No
50 49 sselda φ s S s No
51 50 adantrl φ r R s S s No
52 47 51 mulscld φ r R s S r s s No
53 7 adantr φ r R s S A No
54 53 51 mulscld φ r R s S A s s No
55 52 54 subscld φ r R s S r s s - s A s s No
56 9 adantr φ r R s S B No
57 47 56 mulscld φ r R s S r s B No
58 57 43 subscld φ r R s S r s B - s A s B No
59 43 55 58 subsubs2d φ r R s S A s B - s r s s - s A s s - s r s B - s A s B = A s B + s r s B - s A s B - s r s s - s A s s
60 43 58 55 addsubsassd φ r R s S A s B + s r s B - s A s B - s r s s - s A s s = A s B + s r s B - s A s B - s r s s - s A s s
61 pncan3s A s B No r s B No A s B + s r s B - s A s B = r s B
62 43 57 61 syl2anc φ r R s S A s B + s r s B - s A s B = r s B
63 62 oveq1d φ r R s S A s B + s r s B - s A s B - s r s s - s A s s = r s B - s r s s - s A s s
64 59 60 63 3eqtr2d φ r R s S A s B - s r s s - s A s s - s r s B - s A s B = r s B - s r s s - s A s s
65 47 53 subscld φ r R s S r - s A No
66 65 51 56 subsdid φ r R s S r - s A s s - s B = r - s A s s - s r - s A s B
67 47 53 51 subsdird φ r R s S r - s A s s = r s s - s A s s
68 47 53 56 subsdird φ r R s S r - s A s B = r s B - s A s B
69 67 68 oveq12d φ r R s S r - s A s s - s r - s A s B = r s s - s A s s - s r s B - s A s B
70 66 69 eqtrd φ r R s S r - s A s s - s B = r s s - s A s s - s r s B - s A s B
71 70 oveq2d φ r R s S A s B - s r - s A s s - s B = A s B - s r s s - s A s s - s r s B - s A s B
72 57 54 52 addsubsassd φ r R s S r s B + s A s s - s r s s = r s B + s A s s - s r s s
73 57 52 54 subsubs2d φ r R s S r s B - s r s s - s A s s = r s B + s A s s - s r s s
74 72 73 eqtr4d φ r R s S r s B + s A s s - s r s s = r s B - s r s s - s A s s
75 64 71 74 3eqtr4rd φ r R s S r s B + s A s s - s r s s = A s B - s r - s A s s - s B
76 75 eqeq2d φ r R s S b = r s B + s A s s - s r s s b = A s B - s r - s A s s - s B
77 76 2rexbidva φ r R s S b = r s B + s A s s - s r s s r R s S b = A s B - s r - s A s s - s B
78 77 abbidv φ b | r R s S b = r s B + s A s s - s r s s = b | r R s S b = A s B - s r - s A s s - s B
79 42 78 uneq12d φ a | p L q M a = p s B + s A s q - s p s q b | r R s S b = r s B + s A s s - s r s s = a | p L q M a = A s B - s A - s p s B - s q b | r R s S b = A s B - s r - s A s s - s B
80 7 adantr φ t L u S A No
81 49 sselda φ u S u No
82 81 adantrl φ t L u S u No
83 80 82 mulscld φ t L u S A s u No
84 10 adantr φ t L u S A s B No
85 83 84 subscld φ t L u S A s u - s A s B No
86 13 sselda φ t L t No
87 86 adantrr φ t L u S t No
88 87 82 mulscld φ t L u S t s u No
89 9 adantr φ t L u S B No
90 87 89 mulscld φ t L u S t s B No
91 85 88 90 subsubs2d φ t L u S A s u - s A s B - s t s u - s t s B = A s u - s A s B + s t s B - s t s u
92 90 88 subscld φ t L u S t s B - s t s u No
93 83 92 84 addsubsd φ t L u S A s u + s t s B - s t s u - s A s B = A s u - s A s B + s t s B - s t s u
94 91 93 eqtr4d φ t L u S A s u - s A s B - s t s u - s t s B = A s u + s t s B - s t s u - s A s B
95 94 oveq2d φ t L u S A s B + s A s u - s A s B - s t s u - s t s B = A s B + s A s u + s t s B - s t s u - s A s B
96 83 92 addscld φ t L u S A s u + s t s B - s t s u No
97 pncan3s A s B No A s u + s t s B - s t s u No A s B + s A s u + s t s B - s t s u - s A s B = A s u + s t s B - s t s u
98 84 96 97 syl2anc φ t L u S A s B + s A s u + s t s B - s t s u - s A s B = A s u + s t s B - s t s u
99 95 98 eqtrd φ t L u S A s B + s A s u - s A s B - s t s u - s t s B = A s u + s t s B - s t s u
100 82 89 subscld φ t L u S u - s B No
101 80 87 100 subsdird φ t L u S A - s t s u - s B = A s u - s B - s t s u - s B
102 80 82 89 subsdid φ t L u S A s u - s B = A s u - s A s B
103 87 82 89 subsdid φ t L u S t s u - s B = t s u - s t s B
104 102 103 oveq12d φ t L u S A s u - s B - s t s u - s B = A s u - s A s B - s t s u - s t s B
105 101 104 eqtrd φ t L u S A - s t s u - s B = A s u - s A s B - s t s u - s t s B
106 105 oveq2d φ t L u S A s B + s A - s t s u - s B = A s B + s A s u - s A s B - s t s u - s t s B
107 90 83 addscomd φ t L u S t s B + s A s u = A s u + s t s B
108 107 oveq1d φ t L u S t s B + s A s u - s t s u = A s u + s t s B - s t s u
109 83 90 88 addsubsassd φ t L u S A s u + s t s B - s t s u = A s u + s t s B - s t s u
110 108 109 eqtrd φ t L u S t s B + s A s u - s t s u = A s u + s t s B - s t s u
111 99 106 110 3eqtr4rd φ t L u S t s B + s A s u - s t s u = A s B + s A - s t s u - s B
112 111 eqeq2d φ t L u S c = t s B + s A s u - s t s u c = A s B + s A - s t s u - s B
113 112 2rexbidva φ t L u S c = t s B + s A s u - s t s u t L u S c = A s B + s A - s t s u - s B
114 113 abbidv φ c | t L u S c = t s B + s A s u - s t s u = c | t L u S c = A s B + s A - s t s u - s B
115 45 sselda φ v R v No
116 115 adantrr φ v R w M v No
117 9 adantr φ v R w M B No
118 116 117 mulscld φ v R w M v s B No
119 20 sselda φ w M w No
120 119 adantrl φ v R w M w No
121 116 120 mulscld φ v R w M v s w No
122 118 121 subscld φ v R w M v s B - s v s w No
123 10 adantr φ v R w M A s B No
124 7 adantr φ v R w M A No
125 124 120 mulscld φ v R w M A s w No
126 122 123 125 subsubs2d φ v R w M v s B - s v s w - s A s B - s A s w = v s B - s v s w + s A s w - s A s B
127 122 125 123 addsubsassd φ v R w M v s B - s v s w + s A s w - s A s B = v s B - s v s w + s A s w - s A s B
128 126 127 eqtr4d φ v R w M v s B - s v s w - s A s B - s A s w = v s B - s v s w + s A s w - s A s B
129 128 oveq2d φ v R w M A s B + s v s B - s v s w - s A s B - s A s w = A s B + s v s B - s v s w + s A s w - s A s B
130 122 125 addscld φ v R w M v s B - s v s w + s A s w No
131 pncan3s A s B No v s B - s v s w + s A s w No A s B + s v s B - s v s w + s A s w - s A s B = v s B - s v s w + s A s w
132 123 130 131 syl2anc φ v R w M A s B + s v s B - s v s w + s A s w - s A s B = v s B - s v s w + s A s w
133 129 132 eqtrd φ v R w M A s B + s v s B - s v s w - s A s B - s A s w = v s B - s v s w + s A s w
134 117 120 subscld φ v R w M B - s w No
135 116 124 134 subsdird φ v R w M v - s A s B - s w = v s B - s w - s A s B - s w
136 116 117 120 subsdid φ v R w M v s B - s w = v s B - s v s w
137 124 117 120 subsdid φ v R w M A s B - s w = A s B - s A s w
138 136 137 oveq12d φ v R w M v s B - s w - s A s B - s w = v s B - s v s w - s A s B - s A s w
139 135 138 eqtrd φ v R w M v - s A s B - s w = v s B - s v s w - s A s B - s A s w
140 139 oveq2d φ v R w M A s B + s v - s A s B - s w = A s B + s v s B - s v s w - s A s B - s A s w
141 118 125 121 addsubsd φ v R w M v s B + s A s w - s v s w = v s B - s v s w + s A s w
142 133 140 141 3eqtr4rd φ v R w M v s B + s A s w - s v s w = A s B + s v - s A s B - s w
143 142 eqeq2d φ v R w M d = v s B + s A s w - s v s w d = A s B + s v - s A s B - s w
144 143 2rexbidva φ v R w M d = v s B + s A s w - s v s w v R w M d = A s B + s v - s A s B - s w
145 144 abbidv φ d | v R w M d = v s B + s A s w - s v s w = d | v R w M d = A s B + s v - s A s B - s w
146 114 145 uneq12d φ c | t L u S c = t s B + s A s u - s t s u d | v R w M d = v s B + s A s w - s v s w = c | t L u S c = A s B + s A - s t s u - s B d | v R w M d = A s B + s v - s A s B - s w
147 79 146 oveq12d φ a | p L q M a = p s B + s A s q - s p s q b | r R s S b = r s B + s A s s - s r s s | s c | t L u S c = t s B + s A s u - s t s u d | v R w M d = v s B + s A s w - s v s w = a | p L q M a = A s B - s A - s p s B - s q b | r R s S b = A s B - s r - s A s s - s B | s c | t L u S c = A s B + s A - s t s u - s B d | v R w M d = A s B + s v - s A s B - s w
148 5 147 eqtrd φ A s B = a | p L q M a = A s B - s A - s p s B - s q b | r R s S b = A s B - s r - s A s s - s B | s c | t L u S c = A s B + s A - s t s u - s B d | v R w M d = A s B + s v - s A s B - s w