Metamath Proof Explorer


Theorem mulsval2

Description: The value of surreal multiplication, expressed with fewer distinct variable conditions. (Contributed by Scott Fenton, 8-Mar-2025)

Ref Expression
Assertion mulsval2 ANoBNoAsB=a|pLAqLBa=psB+sAsq-spsqb|rRAsRBb=rsB+sAss-srss|sc|tLAuRBc=tsB+sAsu-stsud|vRAwLBd=vsB+sAsw-svsw

Proof

Step Hyp Ref Expression
1 mulsval ANoBNoAsB=e|fLAgLBe=fsB+sAsg-sfsgh|iRAkRBh=isB+sAsk-sisk|sl|mLAnRBl=msB+sAsn-smsno|xRAyLBo=xsB+sAsy-sxsy
2 mulsval2lem a|pLAqLBa=psB+sAsq-spsq=e|fLAgLBe=fsB+sAsg-sfsg
3 mulsval2lem b|rRAsRBb=rsB+sAss-srss=h|iRAkRBh=isB+sAsk-sisk
4 2 3 uneq12i a|pLAqLBa=psB+sAsq-spsqb|rRAsRBb=rsB+sAss-srss=e|fLAgLBe=fsB+sAsg-sfsgh|iRAkRBh=isB+sAsk-sisk
5 mulsval2lem c|tLAuRBc=tsB+sAsu-stsu=l|mLAnRBl=msB+sAsn-smsn
6 mulsval2lem d|vRAwLBd=vsB+sAsw-svsw=o|xRAyLBo=xsB+sAsy-sxsy
7 5 6 uneq12i c|tLAuRBc=tsB+sAsu-stsud|vRAwLBd=vsB+sAsw-svsw=l|mLAnRBl=msB+sAsn-smsno|xRAyLBo=xsB+sAsy-sxsy
8 4 7 oveq12i a|pLAqLBa=psB+sAsq-spsqb|rRAsRBb=rsB+sAss-srss|sc|tLAuRBc=tsB+sAsu-stsud|vRAwLBd=vsB+sAsw-svsw=e|fLAgLBe=fsB+sAsg-sfsgh|iRAkRBh=isB+sAsk-sisk|sl|mLAnRBl=msB+sAsn-smsno|xRAyLBo=xsB+sAsy-sxsy
9 1 8 eqtr4di ANoBNoAsB=a|pLAqLBa=psB+sAsq-spsqb|rRAsRBb=rsB+sAss-srss|sc|tLAuRBc=tsB+sAsu-stsud|vRAwLBd=vsB+sAsw-svsw