Metamath Proof Explorer


Theorem mumul

Description: The Möbius function is a multiplicative function. This is one of the primary interests of the Möbius function as an arithmetic function. (Contributed by Mario Carneiro, 3-Oct-2014)

Ref Expression
Assertion mumul A B A gcd B = 1 μ A B = μ A μ B

Proof

Step Hyp Ref Expression
1 simpl2 A B A gcd B = 1 μ A = 0 B
2 mucl B μ B
3 1 2 syl A B A gcd B = 1 μ A = 0 μ B
4 3 zcnd A B A gcd B = 1 μ A = 0 μ B
5 4 mul02d A B A gcd B = 1 μ A = 0 0 μ B = 0
6 simpr A B A gcd B = 1 μ A = 0 μ A = 0
7 6 oveq1d A B A gcd B = 1 μ A = 0 μ A μ B = 0 μ B
8 mumullem1 A B μ A = 0 μ A B = 0
9 8 3adantl3 A B A gcd B = 1 μ A = 0 μ A B = 0
10 5 7 9 3eqtr4rd A B A gcd B = 1 μ A = 0 μ A B = μ A μ B
11 simpl1 A B A gcd B = 1 μ B = 0 A
12 mucl A μ A
13 11 12 syl A B A gcd B = 1 μ B = 0 μ A
14 13 zcnd A B A gcd B = 1 μ B = 0 μ A
15 14 mul01d A B A gcd B = 1 μ B = 0 μ A 0 = 0
16 simpr A B A gcd B = 1 μ B = 0 μ B = 0
17 16 oveq2d A B A gcd B = 1 μ B = 0 μ A μ B = μ A 0
18 nncn A A
19 nncn B B
20 mulcom A B A B = B A
21 18 19 20 syl2an A B A B = B A
22 21 fveq2d A B μ A B = μ B A
23 22 adantr A B μ B = 0 μ A B = μ B A
24 mumullem1 B A μ B = 0 μ B A = 0
25 24 ancom1s A B μ B = 0 μ B A = 0
26 23 25 eqtrd A B μ B = 0 μ A B = 0
27 26 3adantl3 A B A gcd B = 1 μ B = 0 μ A B = 0
28 15 17 27 3eqtr4rd A B A gcd B = 1 μ B = 0 μ A B = μ A μ B
29 simpl1 A B A gcd B = 1 μ A 0 μ B 0 A
30 simpl2 A B A gcd B = 1 μ A 0 μ B 0 B
31 29 30 nnmulcld A B A gcd B = 1 μ A 0 μ B 0 A B
32 mumullem2 A B A gcd B = 1 μ A 0 μ B 0 μ A B 0
33 muval2 A B μ A B 0 μ A B = 1 p | p A B
34 31 32 33 syl2anc A B A gcd B = 1 μ A 0 μ B 0 μ A B = 1 p | p A B
35 neg1cn 1
36 35 a1i A B A gcd B = 1 μ A 0 μ B 0 1
37 fzfi 1 B Fin
38 prmssnn
39 rabss2 p | p B p | p B
40 38 39 ax-mp p | p B p | p B
41 dvdsssfz1 B p | p B 1 B
42 30 41 syl A B A gcd B = 1 μ A 0 μ B 0 p | p B 1 B
43 40 42 sstrid A B A gcd B = 1 μ A 0 μ B 0 p | p B 1 B
44 ssfi 1 B Fin p | p B 1 B p | p B Fin
45 37 43 44 sylancr A B A gcd B = 1 μ A 0 μ B 0 p | p B Fin
46 hashcl p | p B Fin p | p B 0
47 45 46 syl A B A gcd B = 1 μ A 0 μ B 0 p | p B 0
48 fzfi 1 A Fin
49 rabss2 p | p A p | p A
50 38 49 ax-mp p | p A p | p A
51 dvdsssfz1 A p | p A 1 A
52 29 51 syl A B A gcd B = 1 μ A 0 μ B 0 p | p A 1 A
53 50 52 sstrid A B A gcd B = 1 μ A 0 μ B 0 p | p A 1 A
54 ssfi 1 A Fin p | p A 1 A p | p A Fin
55 48 53 54 sylancr A B A gcd B = 1 μ A 0 μ B 0 p | p A Fin
56 hashcl p | p A Fin p | p A 0
57 55 56 syl A B A gcd B = 1 μ A 0 μ B 0 p | p A 0
58 36 47 57 expaddd A B A gcd B = 1 μ A 0 μ B 0 1 p | p A + p | p B = 1 p | p A 1 p | p B
59 simpr A B A gcd B = 1 μ A 0 μ B 0 p p
60 simpl1 A B A gcd B = 1 p A
61 60 nnzd A B A gcd B = 1 p A
62 61 adantlr A B A gcd B = 1 μ A 0 μ B 0 p A
63 simpl2 A B A gcd B = 1 p B
64 63 nnzd A B A gcd B = 1 p B
65 64 adantlr A B A gcd B = 1 μ A 0 μ B 0 p B
66 euclemma p A B p A B p A p B
67 59 62 65 66 syl3anc A B A gcd B = 1 μ A 0 μ B 0 p p A B p A p B
68 67 rabbidva A B A gcd B = 1 μ A 0 μ B 0 p | p A B = p | p A p B
69 unrab p | p A p | p B = p | p A p B
70 68 69 eqtr4di A B A gcd B = 1 μ A 0 μ B 0 p | p A B = p | p A p | p B
71 70 fveq2d A B A gcd B = 1 μ A 0 μ B 0 p | p A B = p | p A p | p B
72 inrab p | p A p | p B = p | p A p B
73 nprmdvds1 p ¬ p 1
74 73 adantl A B A gcd B = 1 μ A 0 μ B 0 p ¬ p 1
75 prmz p p
76 75 adantl A B A gcd B = 1 μ A 0 μ B 0 p p
77 dvdsgcd p A B p A p B p A gcd B
78 76 62 65 77 syl3anc A B A gcd B = 1 μ A 0 μ B 0 p p A p B p A gcd B
79 simpll3 A B A gcd B = 1 μ A 0 μ B 0 p A gcd B = 1
80 79 breq2d A B A gcd B = 1 μ A 0 μ B 0 p p A gcd B p 1
81 78 80 sylibd A B A gcd B = 1 μ A 0 μ B 0 p p A p B p 1
82 74 81 mtod A B A gcd B = 1 μ A 0 μ B 0 p ¬ p A p B
83 82 ralrimiva A B A gcd B = 1 μ A 0 μ B 0 p ¬ p A p B
84 rabeq0 p | p A p B = p ¬ p A p B
85 83 84 sylibr A B A gcd B = 1 μ A 0 μ B 0 p | p A p B =
86 72 85 eqtrid A B A gcd B = 1 μ A 0 μ B 0 p | p A p | p B =
87 hashun p | p A Fin p | p B Fin p | p A p | p B = p | p A p | p B = p | p A + p | p B
88 55 45 86 87 syl3anc A B A gcd B = 1 μ A 0 μ B 0 p | p A p | p B = p | p A + p | p B
89 71 88 eqtrd A B A gcd B = 1 μ A 0 μ B 0 p | p A B = p | p A + p | p B
90 89 oveq2d A B A gcd B = 1 μ A 0 μ B 0 1 p | p A B = 1 p | p A + p | p B
91 simprl A B A gcd B = 1 μ A 0 μ B 0 μ A 0
92 muval2 A μ A 0 μ A = 1 p | p A
93 29 91 92 syl2anc A B A gcd B = 1 μ A 0 μ B 0 μ A = 1 p | p A
94 simprr A B A gcd B = 1 μ A 0 μ B 0 μ B 0
95 muval2 B μ B 0 μ B = 1 p | p B
96 30 94 95 syl2anc A B A gcd B = 1 μ A 0 μ B 0 μ B = 1 p | p B
97 93 96 oveq12d A B A gcd B = 1 μ A 0 μ B 0 μ A μ B = 1 p | p A 1 p | p B
98 58 90 97 3eqtr4rd A B A gcd B = 1 μ A 0 μ B 0 μ A μ B = 1 p | p A B
99 34 98 eqtr4d A B A gcd B = 1 μ A 0 μ B 0 μ A B = μ A μ B
100 10 28 99 pm2.61da2ne A B A gcd B = 1 μ A B = μ A μ B