Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic number theory
Number-theoretical functions
muval
Next ⟩
muval1
Metamath Proof Explorer
Ascii
Unicode
Theorem
muval
Description:
The value of the Möbius function.
(Contributed by
Mario Carneiro
, 22-Sep-2014)
Ref
Expression
Assertion
muval
⊢
A
∈
ℕ
→
μ
⁡
A
=
if
∃
p
∈
ℙ
p
2
∥
A
0
−
1
p
∈
ℙ
|
p
∥
A
Proof
Step
Hyp
Ref
Expression
1
breq2
⊢
x
=
A
→
p
2
∥
x
↔
p
2
∥
A
2
1
rexbidv
⊢
x
=
A
→
∃
p
∈
ℙ
p
2
∥
x
↔
∃
p
∈
ℙ
p
2
∥
A
3
breq2
⊢
x
=
A
→
p
∥
x
↔
p
∥
A
4
3
rabbidv
⊢
x
=
A
→
p
∈
ℙ
|
p
∥
x
=
p
∈
ℙ
|
p
∥
A
5
4
fveq2d
⊢
x
=
A
→
p
∈
ℙ
|
p
∥
x
=
p
∈
ℙ
|
p
∥
A
6
5
oveq2d
⊢
x
=
A
→
−
1
p
∈
ℙ
|
p
∥
x
=
−
1
p
∈
ℙ
|
p
∥
A
7
2
6
ifbieq2d
⊢
x
=
A
→
if
∃
p
∈
ℙ
p
2
∥
x
0
−
1
p
∈
ℙ
|
p
∥
x
=
if
∃
p
∈
ℙ
p
2
∥
A
0
−
1
p
∈
ℙ
|
p
∥
A
8
df-mu
⊢
μ
=
x
∈
ℕ
⟼
if
∃
p
∈
ℙ
p
2
∥
x
0
−
1
p
∈
ℙ
|
p
∥
x
9
c0ex
⊢
0
∈
V
10
ovex
⊢
−
1
p
∈
ℙ
|
p
∥
A
∈
V
11
9
10
ifex
⊢
if
∃
p
∈
ℙ
p
2
∥
A
0
−
1
p
∈
ℙ
|
p
∥
A
∈
V
12
7
8
11
fvmpt
⊢
A
∈
ℕ
→
μ
⁡
A
=
if
∃
p
∈
ℙ
p
2
∥
A
0
−
1
p
∈
ℙ
|
p
∥
A