Metamath Proof Explorer


Theorem muval

Description: The value of the Möbius function. (Contributed by Mario Carneiro, 22-Sep-2014)

Ref Expression
Assertion muval A μ A = if p p 2 A 0 1 p | p A

Proof

Step Hyp Ref Expression
1 breq2 x = A p 2 x p 2 A
2 1 rexbidv x = A p p 2 x p p 2 A
3 breq2 x = A p x p A
4 3 rabbidv x = A p | p x = p | p A
5 4 fveq2d x = A p | p x = p | p A
6 5 oveq2d x = A 1 p | p x = 1 p | p A
7 2 6 ifbieq2d x = A if p p 2 x 0 1 p | p x = if p p 2 A 0 1 p | p A
8 df-mu μ = x if p p 2 x 0 1 p | p x
9 c0ex 0 V
10 ovex 1 p | p A V
11 9 10 ifex if p p 2 A 0 1 p | p A V
12 7 8 11 fvmpt A μ A = if p p 2 A 0 1 p | p A