Metamath Proof Explorer


Theorem muval1

Description: The value of the Möbius function at a non-squarefree number. (Contributed by Mario Carneiro, 21-Sep-2014)

Ref Expression
Assertion muval1 A P 2 P 2 A μ A = 0

Proof

Step Hyp Ref Expression
1 muval A μ A = if p p 2 A 0 1 p | p A
2 1 3ad2ant1 A P 2 P 2 A μ A = if p p 2 A 0 1 p | p A
3 exprmfct P 2 p p P
4 3 3ad2ant2 A P 2 P 2 A p p P
5 prmnn p p
6 simpl2 A P 2 P 2 A p P 2
7 eluz2b2 P 2 P 1 < P
8 6 7 sylib A P 2 P 2 A p P 1 < P
9 8 simpld A P 2 P 2 A p P
10 dvdssqlem p P p P p 2 P 2
11 5 9 10 syl2an2 A P 2 P 2 A p p P p 2 P 2
12 simpl3 A P 2 P 2 A p P 2 A
13 prmz p p
14 13 adantl A P 2 P 2 A p p
15 zsqcl p p 2
16 14 15 syl A P 2 P 2 A p p 2
17 eluzelz P 2 P
18 zsqcl P P 2
19 6 17 18 3syl A P 2 P 2 A p P 2
20 simpl1 A P 2 P 2 A p A
21 20 nnzd A P 2 P 2 A p A
22 dvdstr p 2 P 2 A p 2 P 2 P 2 A p 2 A
23 16 19 21 22 syl3anc A P 2 P 2 A p p 2 P 2 P 2 A p 2 A
24 12 23 mpan2d A P 2 P 2 A p p 2 P 2 p 2 A
25 11 24 sylbid A P 2 P 2 A p p P p 2 A
26 25 reximdva A P 2 P 2 A p p P p p 2 A
27 4 26 mpd A P 2 P 2 A p p 2 A
28 27 iftrued A P 2 P 2 A if p p 2 A 0 1 p | p A = 0
29 2 28 eqtrd A P 2 P 2 A μ A = 0