Metamath Proof Explorer


Theorem muval2

Description: The value of the Möbius function at a squarefree number. (Contributed by Mario Carneiro, 3-Oct-2014)

Ref Expression
Assertion muval2 A μ A 0 μ A = 1 p | p A

Proof

Step Hyp Ref Expression
1 df-ne μ A 0 ¬ μ A = 0
2 ifeqor if p p 2 A 0 1 p | p A = 0 if p p 2 A 0 1 p | p A = 1 p | p A
3 muval A μ A = if p p 2 A 0 1 p | p A
4 3 eqeq1d A μ A = 0 if p p 2 A 0 1 p | p A = 0
5 3 eqeq1d A μ A = 1 p | p A if p p 2 A 0 1 p | p A = 1 p | p A
6 4 5 orbi12d A μ A = 0 μ A = 1 p | p A if p p 2 A 0 1 p | p A = 0 if p p 2 A 0 1 p | p A = 1 p | p A
7 2 6 mpbiri A μ A = 0 μ A = 1 p | p A
8 7 ord A ¬ μ A = 0 μ A = 1 p | p A
9 1 8 syl5bi A μ A 0 μ A = 1 p | p A
10 9 imp A μ A 0 μ A = 1 p | p A