Metamath Proof Explorer


Theorem mvdco

Description: Composing two permutations moves at most the union of the points. (Contributed by Stefan O'Rear, 22-Aug-2015)

Ref Expression
Assertion mvdco dom F G I dom F I dom G I

Proof

Step Hyp Ref Expression
1 inundif G I G I = G
2 1 coeq2i F G I G I = F G
3 coundi F G I G I = F G I F G I
4 2 3 eqtr3i F G = F G I F G I
5 4 difeq1i F G I = F G I F G I I
6 difundir F G I F G I I = F G I I F G I I
7 5 6 eqtri F G I = F G I I F G I I
8 7 dmeqi dom F G I = dom F G I I F G I I
9 dmun dom F G I I F G I I = dom F G I I dom F G I I
10 8 9 eqtri dom F G I = dom F G I I dom F G I I
11 inss2 G I I
12 coss2 G I I F G I F I
13 11 12 ax-mp F G I F I
14 cocnvcnv1 F -1 -1 I = F I
15 relcnv Rel F -1 -1
16 coi1 Rel F -1 -1 F -1 -1 I = F -1 -1
17 15 16 ax-mp F -1 -1 I = F -1 -1
18 14 17 eqtr3i F I = F -1 -1
19 cnvcnvss F -1 -1 F
20 18 19 eqsstri F I F
21 13 20 sstri F G I F
22 ssdif F G I F F G I I F I
23 dmss F G I I F I dom F G I I dom F I
24 21 22 23 mp2b dom F G I I dom F I
25 difss F G I I F G I
26 dmss F G I I F G I dom F G I I dom F G I
27 25 26 ax-mp dom F G I I dom F G I
28 dmcoss dom F G I dom G I
29 27 28 sstri dom F G I I dom G I
30 unss12 dom F G I I dom F I dom F G I I dom G I dom F G I I dom F G I I dom F I dom G I
31 24 29 30 mp2an dom F G I I dom F G I I dom F I dom G I
32 10 31 eqsstri dom F G I dom F I dom G I