Metamath Proof Explorer


Theorem mvlladdd

Description: Move the left term in a sum on the LHS to the RHS, deduction form. (Contributed by David A. Wheeler, 11-Oct-2018)

Ref Expression
Hypotheses mvlraddd.1 φ A
mvlraddd.2 φ B
mvlraddd.3 φ A + B = C
Assertion mvlladdd φ B = C A

Proof

Step Hyp Ref Expression
1 mvlraddd.1 φ A
2 mvlraddd.2 φ B
3 mvlraddd.3 φ A + B = C
4 2 1 pncand φ B + A - A = B
5 1 2 addcomd φ A + B = B + A
6 5 3 eqtr3d φ B + A = C
7 6 oveq1d φ B + A - A = C A
8 4 7 eqtr3d φ B = C A