Metamath Proof Explorer


Theorem mvllmuli

Description: Move the left term in a product on the LHS to the RHS, inference form. Uses divcan4i . (Contributed by David A. Wheeler, 11-Oct-2018)

Ref Expression
Hypotheses mvllmuli.1 A
mvllmuli.2 B
mvllmuli.3 A 0
mvllmuli.4 A B = C
Assertion mvllmuli B = C A

Proof

Step Hyp Ref Expression
1 mvllmuli.1 A
2 mvllmuli.2 B
3 mvllmuli.3 A 0
4 mvllmuli.4 A B = C
5 2 1 3 divcan4i B A A = B
6 1 2 4 mulcomli B A = C
7 6 oveq1i B A A = C A
8 5 7 eqtr3i B = C A