Metamath Proof Explorer


Theorem mvmulfv

Description: A cell/element in the vector resulting from a multiplication of a vector with a matrix. (Contributed by AV, 23-Feb-2019)

Ref Expression
Hypotheses mvmulfval.x × ˙ = R maVecMul M N
mvmulfval.b B = Base R
mvmulfval.t · ˙ = R
mvmulfval.r φ R V
mvmulfval.m φ M Fin
mvmulfval.n φ N Fin
mvmulval.x φ X B M × N
mvmulval.y φ Y B N
mvmulfv.i φ I M
Assertion mvmulfv φ X × ˙ Y I = R j N I X j · ˙ Y j

Proof

Step Hyp Ref Expression
1 mvmulfval.x × ˙ = R maVecMul M N
2 mvmulfval.b B = Base R
3 mvmulfval.t · ˙ = R
4 mvmulfval.r φ R V
5 mvmulfval.m φ M Fin
6 mvmulfval.n φ N Fin
7 mvmulval.x φ X B M × N
8 mvmulval.y φ Y B N
9 mvmulfv.i φ I M
10 1 2 3 4 5 6 7 8 mvmulval φ X × ˙ Y = i M R j N i X j · ˙ Y j
11 oveq1 i = I i X j = I X j
12 11 adantl φ i = I i X j = I X j
13 12 oveq1d φ i = I i X j · ˙ Y j = I X j · ˙ Y j
14 13 mpteq2dv φ i = I j N i X j · ˙ Y j = j N I X j · ˙ Y j
15 14 oveq2d φ i = I R j N i X j · ˙ Y j = R j N I X j · ˙ Y j
16 ovexd φ R j N I X j · ˙ Y j V
17 10 15 9 16 fvmptd φ X × ˙ Y I = R j N I X j · ˙ Y j