Metamath Proof Explorer


Theorem mvmulfval

Description: Functional value of the matrix vector multiplication operator. (Contributed by AV, 23-Feb-2019)

Ref Expression
Hypotheses mvmulfval.x × ˙ = R maVecMul M N
mvmulfval.b B = Base R
mvmulfval.t · ˙ = R
mvmulfval.r φ R V
mvmulfval.m φ M Fin
mvmulfval.n φ N Fin
Assertion mvmulfval φ × ˙ = x B M × N , y B N i M R j N i x j · ˙ y j

Proof

Step Hyp Ref Expression
1 mvmulfval.x × ˙ = R maVecMul M N
2 mvmulfval.b B = Base R
3 mvmulfval.t · ˙ = R
4 mvmulfval.r φ R V
5 mvmulfval.m φ M Fin
6 mvmulfval.n φ N Fin
7 df-mvmul maVecMul = r V , o V 1 st o / m 2 nd o / n x Base r m × n , y Base r n i m r j n i x j r y j
8 7 a1i φ maVecMul = r V , o V 1 st o / m 2 nd o / n x Base r m × n , y Base r n i m r j n i x j r y j
9 fvex 1 st o V
10 fvex 2 nd o V
11 xpeq12 m = 1 st o n = 2 nd o m × n = 1 st o × 2 nd o
12 11 oveq2d m = 1 st o n = 2 nd o Base r m × n = Base r 1 st o × 2 nd o
13 oveq2 n = 2 nd o Base r n = Base r 2 nd o
14 13 adantl m = 1 st o n = 2 nd o Base r n = Base r 2 nd o
15 simpl m = 1 st o n = 2 nd o m = 1 st o
16 simpr m = 1 st o n = 2 nd o n = 2 nd o
17 16 mpteq1d m = 1 st o n = 2 nd o j n i x j r y j = j 2 nd o i x j r y j
18 17 oveq2d m = 1 st o n = 2 nd o r j n i x j r y j = r j 2 nd o i x j r y j
19 15 18 mpteq12dv m = 1 st o n = 2 nd o i m r j n i x j r y j = i 1 st o r j 2 nd o i x j r y j
20 12 14 19 mpoeq123dv m = 1 st o n = 2 nd o x Base r m × n , y Base r n i m r j n i x j r y j = x Base r 1 st o × 2 nd o , y Base r 2 nd o i 1 st o r j 2 nd o i x j r y j
21 9 10 20 csbie2 1 st o / m 2 nd o / n x Base r m × n , y Base r n i m r j n i x j r y j = x Base r 1 st o × 2 nd o , y Base r 2 nd o i 1 st o r j 2 nd o i x j r y j
22 simprl φ r = R o = M N r = R
23 22 fveq2d φ r = R o = M N Base r = Base R
24 23 2 eqtr4di φ r = R o = M N Base r = B
25 fveq2 o = M N 1 st o = 1 st M N
26 25 ad2antll φ r = R o = M N 1 st o = 1 st M N
27 op1stg M Fin N Fin 1 st M N = M
28 5 6 27 syl2anc φ 1 st M N = M
29 28 adantr φ r = R o = M N 1 st M N = M
30 26 29 eqtrd φ r = R o = M N 1 st o = M
31 fveq2 o = M N 2 nd o = 2 nd M N
32 31 ad2antll φ r = R o = M N 2 nd o = 2 nd M N
33 op2ndg M Fin N Fin 2 nd M N = N
34 5 6 33 syl2anc φ 2 nd M N = N
35 34 adantr φ r = R o = M N 2 nd M N = N
36 32 35 eqtrd φ r = R o = M N 2 nd o = N
37 30 36 xpeq12d φ r = R o = M N 1 st o × 2 nd o = M × N
38 24 37 oveq12d φ r = R o = M N Base r 1 st o × 2 nd o = B M × N
39 24 36 oveq12d φ r = R o = M N Base r 2 nd o = B N
40 fveq2 r = R r = R
41 40 adantr r = R o = M N r = R
42 41 adantl φ r = R o = M N r = R
43 42 3 eqtr4di φ r = R o = M N r = · ˙
44 43 oveqd φ r = R o = M N i x j r y j = i x j · ˙ y j
45 36 44 mpteq12dv φ r = R o = M N j 2 nd o i x j r y j = j N i x j · ˙ y j
46 22 45 oveq12d φ r = R o = M N r j 2 nd o i x j r y j = R j N i x j · ˙ y j
47 30 46 mpteq12dv φ r = R o = M N i 1 st o r j 2 nd o i x j r y j = i M R j N i x j · ˙ y j
48 38 39 47 mpoeq123dv φ r = R o = M N x Base r 1 st o × 2 nd o , y Base r 2 nd o i 1 st o r j 2 nd o i x j r y j = x B M × N , y B N i M R j N i x j · ˙ y j
49 21 48 syl5eq φ r = R o = M N 1 st o / m 2 nd o / n x Base r m × n , y Base r n i m r j n i x j r y j = x B M × N , y B N i M R j N i x j · ˙ y j
50 4 elexd φ R V
51 opex M N V
52 51 a1i φ M N V
53 ovex B M × N V
54 ovex B N V
55 53 54 mpoex x B M × N , y B N i M R j N i x j · ˙ y j V
56 55 a1i φ x B M × N , y B N i M R j N i x j · ˙ y j V
57 8 49 50 52 56 ovmpod φ R maVecMul M N = x B M × N , y B N i M R j N i x j · ˙ y j
58 1 57 syl5eq φ × ˙ = x B M × N , y B N i M R j N i x j · ˙ y j