Metamath Proof Explorer


Theorem mvmulfval

Description: Functional value of the matrix vector multiplication operator. (Contributed by AV, 23-Feb-2019)

Ref Expression
Hypotheses mvmulfval.x ×˙=RmaVecMulMN
mvmulfval.b B=BaseR
mvmulfval.t ·˙=R
mvmulfval.r φRV
mvmulfval.m φMFin
mvmulfval.n φNFin
Assertion mvmulfval φ×˙=xBM×N,yBNiMRjNixj·˙yj

Proof

Step Hyp Ref Expression
1 mvmulfval.x ×˙=RmaVecMulMN
2 mvmulfval.b B=BaseR
3 mvmulfval.t ·˙=R
4 mvmulfval.r φRV
5 mvmulfval.m φMFin
6 mvmulfval.n φNFin
7 df-mvmul maVecMul=rV,oV1sto/m2ndo/nxBaserm×n,yBasernimrjnixjryj
8 7 a1i φmaVecMul=rV,oV1sto/m2ndo/nxBaserm×n,yBasernimrjnixjryj
9 fvex 1stoV
10 fvex 2ndoV
11 xpeq12 m=1ston=2ndom×n=1sto×2ndo
12 11 oveq2d m=1ston=2ndoBaserm×n=Baser1sto×2ndo
13 oveq2 n=2ndoBasern=Baser2ndo
14 13 adantl m=1ston=2ndoBasern=Baser2ndo
15 simpl m=1ston=2ndom=1sto
16 simpr m=1ston=2ndon=2ndo
17 16 mpteq1d m=1ston=2ndojnixjryj=j2ndoixjryj
18 17 oveq2d m=1ston=2ndorjnixjryj=rj2ndoixjryj
19 15 18 mpteq12dv m=1ston=2ndoimrjnixjryj=i1storj2ndoixjryj
20 12 14 19 mpoeq123dv m=1ston=2ndoxBaserm×n,yBasernimrjnixjryj=xBaser1sto×2ndo,yBaser2ndoi1storj2ndoixjryj
21 9 10 20 csbie2 1sto/m2ndo/nxBaserm×n,yBasernimrjnixjryj=xBaser1sto×2ndo,yBaser2ndoi1storj2ndoixjryj
22 simprl φr=Ro=MNr=R
23 22 fveq2d φr=Ro=MNBaser=BaseR
24 23 2 eqtr4di φr=Ro=MNBaser=B
25 fveq2 o=MN1sto=1stMN
26 25 ad2antll φr=Ro=MN1sto=1stMN
27 op1stg MFinNFin1stMN=M
28 5 6 27 syl2anc φ1stMN=M
29 28 adantr φr=Ro=MN1stMN=M
30 26 29 eqtrd φr=Ro=MN1sto=M
31 fveq2 o=MN2ndo=2ndMN
32 31 ad2antll φr=Ro=MN2ndo=2ndMN
33 op2ndg MFinNFin2ndMN=N
34 5 6 33 syl2anc φ2ndMN=N
35 34 adantr φr=Ro=MN2ndMN=N
36 32 35 eqtrd φr=Ro=MN2ndo=N
37 30 36 xpeq12d φr=Ro=MN1sto×2ndo=M×N
38 24 37 oveq12d φr=Ro=MNBaser1sto×2ndo=BM×N
39 24 36 oveq12d φr=Ro=MNBaser2ndo=BN
40 fveq2 r=Rr=R
41 40 adantr r=Ro=MNr=R
42 41 adantl φr=Ro=MNr=R
43 42 3 eqtr4di φr=Ro=MNr=·˙
44 43 oveqd φr=Ro=MNixjryj=ixj·˙yj
45 36 44 mpteq12dv φr=Ro=MNj2ndoixjryj=jNixj·˙yj
46 22 45 oveq12d φr=Ro=MNrj2ndoixjryj=RjNixj·˙yj
47 30 46 mpteq12dv φr=Ro=MNi1storj2ndoixjryj=iMRjNixj·˙yj
48 38 39 47 mpoeq123dv φr=Ro=MNxBaser1sto×2ndo,yBaser2ndoi1storj2ndoixjryj=xBM×N,yBNiMRjNixj·˙yj
49 21 48 eqtrid φr=Ro=MN1sto/m2ndo/nxBaserm×n,yBasernimrjnixjryj=xBM×N,yBNiMRjNixj·˙yj
50 4 elexd φRV
51 opex MNV
52 51 a1i φMNV
53 ovex BM×NV
54 ovex BNV
55 53 54 mpoex xBM×N,yBNiMRjNixj·˙yjV
56 55 a1i φxBM×N,yBNiMRjNixj·˙yjV
57 8 49 50 52 56 ovmpod φRmaVecMulMN=xBM×N,yBNiMRjNixj·˙yj
58 1 57 eqtrid φ×˙=xBM×N,yBNiMRjNixj·˙yj