Metamath Proof Explorer


Theorem mvrf

Description: The power series variable function is a function from the index set to elements of the power series structure representing X i for each i . (Contributed by Mario Carneiro, 29-Dec-2014)

Ref Expression
Hypotheses mvrf.s S = I mPwSer R
mvrf.v V = I mVar R
mvrf.b B = Base S
mvrf.i φ I W
mvrf.r φ R Ring
Assertion mvrf φ V : I B

Proof

Step Hyp Ref Expression
1 mvrf.s S = I mPwSer R
2 mvrf.v V = I mVar R
3 mvrf.b B = Base S
4 mvrf.i φ I W
5 mvrf.r φ R Ring
6 eqid h 0 I | h -1 Fin = h 0 I | h -1 Fin
7 eqid 0 R = 0 R
8 eqid 1 R = 1 R
9 2 6 7 8 4 5 mvrfval φ V = x I f h 0 I | h -1 Fin if f = y I if y = x 1 0 1 R 0 R
10 eqid Base R = Base R
11 10 8 ringidcl R Ring 1 R Base R
12 5 11 syl φ 1 R Base R
13 10 7 ring0cl R Ring 0 R Base R
14 5 13 syl φ 0 R Base R
15 12 14 ifcld φ if f = y I if y = x 1 0 1 R 0 R Base R
16 15 ad2antrr φ x I f h 0 I | h -1 Fin if f = y I if y = x 1 0 1 R 0 R Base R
17 16 fmpttd φ x I f h 0 I | h -1 Fin if f = y I if y = x 1 0 1 R 0 R : h 0 I | h -1 Fin Base R
18 fvex Base R V
19 ovex 0 I V
20 19 rabex h 0 I | h -1 Fin V
21 18 20 elmap f h 0 I | h -1 Fin if f = y I if y = x 1 0 1 R 0 R Base R h 0 I | h -1 Fin f h 0 I | h -1 Fin if f = y I if y = x 1 0 1 R 0 R : h 0 I | h -1 Fin Base R
22 17 21 sylibr φ x I f h 0 I | h -1 Fin if f = y I if y = x 1 0 1 R 0 R Base R h 0 I | h -1 Fin
23 1 10 6 3 4 psrbas φ B = Base R h 0 I | h -1 Fin
24 23 adantr φ x I B = Base R h 0 I | h -1 Fin
25 22 24 eleqtrrd φ x I f h 0 I | h -1 Fin if f = y I if y = x 1 0 1 R 0 R B
26 9 25 fmpt3d φ V : I B