Metamath Proof Explorer


Theorem mvrf2

Description: The power series/polynomial variable function maps indices to polynomials. (Contributed by Stefan O'Rear, 8-Mar-2015)

Ref Expression
Hypotheses mvrf2.p P = I mPoly R
mvrf2.v V = I mVar R
mvrf2.b B = Base P
mvrf2.i φ I W
mvrf2.r φ R Ring
Assertion mvrf2 φ V : I B

Proof

Step Hyp Ref Expression
1 mvrf2.p P = I mPoly R
2 mvrf2.v V = I mVar R
3 mvrf2.b B = Base P
4 mvrf2.i φ I W
5 mvrf2.r φ R Ring
6 eqid I mPwSer R = I mPwSer R
7 eqid Base I mPwSer R = Base I mPwSer R
8 6 2 7 4 5 mvrf φ V : I Base I mPwSer R
9 8 ffnd φ V Fn I
10 4 adantr φ x I I W
11 5 adantr φ x I R Ring
12 simpr φ x I x I
13 1 2 3 10 11 12 mvrcl φ x I V x B
14 13 ralrimiva φ x I V x B
15 ffnfv V : I B V Fn I x I V x B
16 9 14 15 sylanbrc φ V : I B