Metamath Proof Explorer


Theorem mvrladdd

Description: Move the left term in a sum on the RHS to the LHS, deduction form. (Contributed by David A. Wheeler, 11-Oct-2018)

Ref Expression
Hypotheses mvrraddd.1 φ B
mvrraddd.2 φ C
mvrraddd.3 φ A = B + C
Assertion mvrladdd φ A B = C

Proof

Step Hyp Ref Expression
1 mvrraddd.1 φ B
2 mvrraddd.2 φ C
3 mvrraddd.3 φ A = B + C
4 1 2 3 comraddd φ A = C + B
5 2 1 4 mvrraddd φ A B = C