Metamath Proof Explorer


Theorem mvrraddd

Description: Move the right term in a sum on the RHS to the LHS, deduction form. (Contributed by David A. Wheeler, 11-Oct-2018)

Ref Expression
Hypotheses mvrraddd.1 φ B
mvrraddd.2 φ C
mvrraddd.3 φ A = B + C
Assertion mvrraddd φ A C = B

Proof

Step Hyp Ref Expression
1 mvrraddd.1 φ B
2 mvrraddd.2 φ C
3 mvrraddd.3 φ A = B + C
4 3 oveq1d φ A C = B + C - C
5 1 2 pncand φ B + C - C = B
6 4 5 eqtrd φ A C = B