Step |
Hyp |
Ref |
Expression |
1 |
|
mvth.a |
|
2 |
|
mvth.b |
|
3 |
|
mvth.lt |
|
4 |
|
mvth.f |
|
5 |
|
mvth.d |
|
6 |
|
mptresid |
|
7 |
|
iccssre |
|
8 |
1 2 7
|
syl2anc |
|
9 |
|
ax-resscn |
|
10 |
|
cncfmptid |
|
11 |
8 9 10
|
sylancl |
|
12 |
6 11
|
eqeltrid |
|
13 |
6
|
eqcomi |
|
14 |
13
|
oveq2i |
|
15 |
|
reelprrecn |
|
16 |
15
|
a1i |
|
17 |
|
simpr |
|
18 |
17
|
recnd |
|
19 |
|
1red |
|
20 |
16
|
dvmptid |
|
21 |
|
eqid |
|
22 |
21
|
tgioo2 |
|
23 |
|
iccntr |
|
24 |
1 2 23
|
syl2anc |
|
25 |
16 18 19 20 8 22 21 24
|
dvmptres2 |
|
26 |
14 25
|
eqtr3id |
|
27 |
26
|
dmeqd |
|
28 |
|
1ex |
|
29 |
|
eqid |
|
30 |
28 29
|
dmmpti |
|
31 |
27 30
|
eqtrdi |
|
32 |
1 2 3 4 12 5 31
|
cmvth |
|
33 |
1
|
rexrd |
|
34 |
2
|
rexrd |
|
35 |
1 2 3
|
ltled |
|
36 |
|
ubicc2 |
|
37 |
33 34 35 36
|
syl3anc |
|
38 |
|
fvresi |
|
39 |
37 38
|
syl |
|
40 |
|
lbicc2 |
|
41 |
33 34 35 40
|
syl3anc |
|
42 |
|
fvresi |
|
43 |
41 42
|
syl |
|
44 |
39 43
|
oveq12d |
|
45 |
44
|
adantr |
|
46 |
45
|
oveq1d |
|
47 |
26
|
fveq1d |
|
48 |
|
eqidd |
|
49 |
48 29 28
|
fvmpt3i |
|
50 |
47 49
|
sylan9eq |
|
51 |
50
|
oveq2d |
|
52 |
|
cncff |
|
53 |
4 52
|
syl |
|
54 |
53 37
|
ffvelrnd |
|
55 |
53 41
|
ffvelrnd |
|
56 |
54 55
|
resubcld |
|
57 |
56
|
recnd |
|
58 |
57
|
adantr |
|
59 |
58
|
mulid1d |
|
60 |
51 59
|
eqtrd |
|
61 |
46 60
|
eqeq12d |
|
62 |
2 1
|
resubcld |
|
63 |
62
|
recnd |
|
64 |
63
|
adantr |
|
65 |
|
dvf |
|
66 |
5
|
feq2d |
|
67 |
65 66
|
mpbii |
|
68 |
67
|
ffvelrnda |
|
69 |
1 2
|
posdifd |
|
70 |
3 69
|
mpbid |
|
71 |
70
|
gt0ne0d |
|
72 |
71
|
adantr |
|
73 |
58 64 68 72
|
divmuld |
|
74 |
61 73
|
bitr4d |
|
75 |
|
eqcom |
|
76 |
|
eqcom |
|
77 |
74 75 76
|
3bitr4g |
|
78 |
77
|
rexbidva |
|
79 |
32 78
|
mpbid |
|