| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mvth.a |
|
| 2 |
|
mvth.b |
|
| 3 |
|
mvth.lt |
|
| 4 |
|
mvth.f |
|
| 5 |
|
mvth.d |
|
| 6 |
|
mptresid |
|
| 7 |
|
iccssre |
|
| 8 |
1 2 7
|
syl2anc |
|
| 9 |
|
ax-resscn |
|
| 10 |
|
cncfmptid |
|
| 11 |
8 9 10
|
sylancl |
|
| 12 |
6 11
|
eqeltrid |
|
| 13 |
6
|
eqcomi |
|
| 14 |
13
|
oveq2i |
|
| 15 |
|
reelprrecn |
|
| 16 |
15
|
a1i |
|
| 17 |
|
simpr |
|
| 18 |
17
|
recnd |
|
| 19 |
|
1red |
|
| 20 |
16
|
dvmptid |
|
| 21 |
|
tgioo4 |
|
| 22 |
|
eqid |
|
| 23 |
|
iccntr |
|
| 24 |
1 2 23
|
syl2anc |
|
| 25 |
16 18 19 20 8 21 22 24
|
dvmptres2 |
|
| 26 |
14 25
|
eqtr3id |
|
| 27 |
26
|
dmeqd |
|
| 28 |
|
1ex |
|
| 29 |
|
eqid |
|
| 30 |
28 29
|
dmmpti |
|
| 31 |
27 30
|
eqtrdi |
|
| 32 |
1 2 3 4 12 5 31
|
cmvth |
|
| 33 |
1
|
rexrd |
|
| 34 |
2
|
rexrd |
|
| 35 |
1 2 3
|
ltled |
|
| 36 |
|
ubicc2 |
|
| 37 |
33 34 35 36
|
syl3anc |
|
| 38 |
|
fvresi |
|
| 39 |
37 38
|
syl |
|
| 40 |
|
lbicc2 |
|
| 41 |
33 34 35 40
|
syl3anc |
|
| 42 |
|
fvresi |
|
| 43 |
41 42
|
syl |
|
| 44 |
39 43
|
oveq12d |
|
| 45 |
44
|
adantr |
|
| 46 |
45
|
oveq1d |
|
| 47 |
26
|
fveq1d |
|
| 48 |
|
eqidd |
|
| 49 |
48 29 28
|
fvmpt3i |
|
| 50 |
47 49
|
sylan9eq |
|
| 51 |
50
|
oveq2d |
|
| 52 |
|
cncff |
|
| 53 |
4 52
|
syl |
|
| 54 |
53 37
|
ffvelcdmd |
|
| 55 |
53 41
|
ffvelcdmd |
|
| 56 |
54 55
|
resubcld |
|
| 57 |
56
|
recnd |
|
| 58 |
57
|
adantr |
|
| 59 |
58
|
mulridd |
|
| 60 |
51 59
|
eqtrd |
|
| 61 |
46 60
|
eqeq12d |
|
| 62 |
2 1
|
resubcld |
|
| 63 |
62
|
recnd |
|
| 64 |
63
|
adantr |
|
| 65 |
|
dvf |
|
| 66 |
5
|
feq2d |
|
| 67 |
65 66
|
mpbii |
|
| 68 |
67
|
ffvelcdmda |
|
| 69 |
1 2
|
posdifd |
|
| 70 |
3 69
|
mpbid |
|
| 71 |
70
|
gt0ne0d |
|
| 72 |
71
|
adantr |
|
| 73 |
58 64 68 72
|
divmuld |
|
| 74 |
61 73
|
bitr4d |
|
| 75 |
|
eqcom |
|
| 76 |
|
eqcom |
|
| 77 |
74 75 76
|
3bitr4g |
|
| 78 |
77
|
rexbidva |
|
| 79 |
32 78
|
mpbid |
|