Metamath Proof Explorer


Theorem mxidlirred

Description: In a principal ideal domain, maximal ideals are exactly the ideals generated by irreducible elements. (Contributed by Thierry Arnoux, 22-Mar-2025)

Ref Expression
Hypotheses mxidlirred.b B = Base R
mxidlirred.k K = RSpan R
mxidlirred.0 0 ˙ = 0 R
mxidlirred.m M = K X
mxidlirred.r φ R PID
mxidlirred.x φ X B
mxidlirred.y φ X 0 ˙
mxidlirred.1 φ M LIdeal R
Assertion mxidlirred Could not format assertion : No typesetting found for |- ( ph -> ( M e. ( MaxIdeal ` R ) <-> X e. ( Irred ` R ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 mxidlirred.b B = Base R
2 mxidlirred.k K = RSpan R
3 mxidlirred.0 0 ˙ = 0 R
4 mxidlirred.m M = K X
5 mxidlirred.r φ R PID
6 mxidlirred.x φ X B
7 mxidlirred.y φ X 0 ˙
8 mxidlirred.1 φ M LIdeal R
9 df-pid PID = IDomn LPIR
10 5 9 eleqtrdi φ R IDomn LPIR
11 10 elin1d φ R IDomn
12 11 adantr Could not format ( ( ph /\ M e. ( MaxIdeal ` R ) ) -> R e. IDomn ) : No typesetting found for |- ( ( ph /\ M e. ( MaxIdeal ` R ) ) -> R e. IDomn ) with typecode |-
13 6 adantr Could not format ( ( ph /\ M e. ( MaxIdeal ` R ) ) -> X e. B ) : No typesetting found for |- ( ( ph /\ M e. ( MaxIdeal ` R ) ) -> X e. B ) with typecode |-
14 7 adantr Could not format ( ( ph /\ M e. ( MaxIdeal ` R ) ) -> X =/= .0. ) : No typesetting found for |- ( ( ph /\ M e. ( MaxIdeal ` R ) ) -> X =/= .0. ) with typecode |-
15 simpr Could not format ( ( ph /\ M e. ( MaxIdeal ` R ) ) -> M e. ( MaxIdeal ` R ) ) : No typesetting found for |- ( ( ph /\ M e. ( MaxIdeal ` R ) ) -> M e. ( MaxIdeal ` R ) ) with typecode |-
16 1 2 3 4 12 13 14 15 mxidlirredi Could not format ( ( ph /\ M e. ( MaxIdeal ` R ) ) -> X e. ( Irred ` R ) ) : No typesetting found for |- ( ( ph /\ M e. ( MaxIdeal ` R ) ) -> X e. ( Irred ` R ) ) with typecode |-
17 eqid r R = r R
18 simplr Could not format ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) -> x e. B ) : No typesetting found for |- ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) -> x e. B ) with typecode |-
19 18 ad2antrr Could not format ( ( ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) /\ t e. B ) /\ X = ( t ( .r ` R ) x ) ) -> x e. B ) : No typesetting found for |- ( ( ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) /\ t e. B ) /\ X = ( t ( .r ` R ) x ) ) -> x e. B ) with typecode |-
20 6 ad8antr Could not format ( ( ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) /\ t e. B ) /\ X = ( t ( .r ` R ) x ) ) -> X e. B ) : No typesetting found for |- ( ( ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) /\ t e. B ) /\ X = ( t ( .r ` R ) x ) ) -> X e. B ) with typecode |-
21 eqid Unit R = Unit R
22 eqid R = R
23 11 idomringd φ R Ring
24 23 ad4antr Could not format ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) -> R e. Ring ) : No typesetting found for |- ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) -> R e. Ring ) with typecode |-
25 24 ad2antrr Could not format ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) -> R e. Ring ) : No typesetting found for |- ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) -> R e. Ring ) with typecode |-
26 25 ad2antrr Could not format ( ( ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) /\ t e. B ) /\ X = ( t ( .r ` R ) x ) ) -> R e. Ring ) : No typesetting found for |- ( ( ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) /\ t e. B ) /\ X = ( t ( .r ` R ) x ) ) -> R e. Ring ) with typecode |-
27 simplr Could not format ( ( ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) /\ t e. B ) /\ X = ( t ( .r ` R ) x ) ) -> t e. B ) : No typesetting found for |- ( ( ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) /\ t e. B ) /\ X = ( t ( .r ` R ) x ) ) -> t e. B ) with typecode |-
28 simpr Could not format ( ( ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) /\ t e. B ) /\ X = ( t ( .r ` R ) x ) ) -> X = ( t ( .r ` R ) x ) ) : No typesetting found for |- ( ( ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) /\ t e. B ) /\ X = ( t ( .r ` R ) x ) ) -> X = ( t ( .r ` R ) x ) ) with typecode |-
29 simp-8r Could not format ( ( ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) /\ t e. B ) /\ X = ( t ( .r ` R ) x ) ) -> X e. ( Irred ` R ) ) : No typesetting found for |- ( ( ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) /\ t e. B ) /\ X = ( t ( .r ` R ) x ) ) -> X e. ( Irred ` R ) ) with typecode |-
30 28 29 eqeltrrd Could not format ( ( ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) /\ t e. B ) /\ X = ( t ( .r ` R ) x ) ) -> ( t ( .r ` R ) x ) e. ( Irred ` R ) ) : No typesetting found for |- ( ( ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) /\ t e. B ) /\ X = ( t ( .r ` R ) x ) ) -> ( t ( .r ` R ) x ) e. ( Irred ` R ) ) with typecode |-
31 eqid Irred R = Irred R
32 31 1 21 22 irredmul t B x B t R x Irred R t Unit R x Unit R
33 27 19 30 32 syl3anc Could not format ( ( ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) /\ t e. B ) /\ X = ( t ( .r ` R ) x ) ) -> ( t e. ( Unit ` R ) \/ x e. ( Unit ` R ) ) ) : No typesetting found for |- ( ( ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) /\ t e. B ) /\ X = ( t ( .r ` R ) x ) ) -> ( t e. ( Unit ` R ) \/ x e. ( Unit ` R ) ) ) with typecode |-
34 simpr Could not format ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) -> k = ( K ` { x } ) ) : No typesetting found for |- ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) -> k = ( K ` { x } ) ) with typecode |-
35 34 ad2antrr Could not format ( ( ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) /\ t e. B ) /\ X = ( t ( .r ` R ) x ) ) -> k = ( K ` { x } ) ) : No typesetting found for |- ( ( ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) /\ t e. B ) /\ X = ( t ( .r ` R ) x ) ) -> k = ( K ` { x } ) ) with typecode |-
36 simpr Could not format ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) -> -. ( M C_ k -> ( k = M \/ k = B ) ) ) : No typesetting found for |- ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) -> -. ( M C_ k -> ( k = M \/ k = B ) ) ) with typecode |-
37 annim M k ¬ k = M k = B ¬ M k k = M k = B
38 36 37 sylibr Could not format ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) -> ( M C_ k /\ -. ( k = M \/ k = B ) ) ) : No typesetting found for |- ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) -> ( M C_ k /\ -. ( k = M \/ k = B ) ) ) with typecode |-
39 38 simprd Could not format ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) -> -. ( k = M \/ k = B ) ) : No typesetting found for |- ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) -> -. ( k = M \/ k = B ) ) with typecode |-
40 ioran ¬ k = M k = B ¬ k = M ¬ k = B
41 39 40 sylib Could not format ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) -> ( -. k = M /\ -. k = B ) ) : No typesetting found for |- ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) -> ( -. k = M /\ -. k = B ) ) with typecode |-
42 41 simprd Could not format ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) -> -. k = B ) : No typesetting found for |- ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) -> -. k = B ) with typecode |-
43 42 neqned Could not format ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) -> k =/= B ) : No typesetting found for |- ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) -> k =/= B ) with typecode |-
44 43 ad4antr Could not format ( ( ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) /\ t e. B ) /\ X = ( t ( .r ` R ) x ) ) -> k =/= B ) : No typesetting found for |- ( ( ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) /\ t e. B ) /\ X = ( t ( .r ` R ) x ) ) -> k =/= B ) with typecode |-
45 35 44 eqnetrrd Could not format ( ( ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) /\ t e. B ) /\ X = ( t ( .r ` R ) x ) ) -> ( K ` { x } ) =/= B ) : No typesetting found for |- ( ( ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) /\ t e. B ) /\ X = ( t ( .r ` R ) x ) ) -> ( K ` { x } ) =/= B ) with typecode |-
46 45 neneqd Could not format ( ( ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) /\ t e. B ) /\ X = ( t ( .r ` R ) x ) ) -> -. ( K ` { x } ) = B ) : No typesetting found for |- ( ( ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) /\ t e. B ) /\ X = ( t ( .r ` R ) x ) ) -> -. ( K ` { x } ) = B ) with typecode |-
47 eqid K x = K x
48 11 ad8antr Could not format ( ( ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) /\ t e. B ) /\ X = ( t ( .r ` R ) x ) ) -> R e. IDomn ) : No typesetting found for |- ( ( ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) /\ t e. B ) /\ X = ( t ( .r ` R ) x ) ) -> R e. IDomn ) with typecode |-
49 21 2 47 1 19 48 unitpidl1 Could not format ( ( ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) /\ t e. B ) /\ X = ( t ( .r ` R ) x ) ) -> ( ( K ` { x } ) = B <-> x e. ( Unit ` R ) ) ) : No typesetting found for |- ( ( ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) /\ t e. B ) /\ X = ( t ( .r ` R ) x ) ) -> ( ( K ` { x } ) = B <-> x e. ( Unit ` R ) ) ) with typecode |-
50 46 49 mtbid Could not format ( ( ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) /\ t e. B ) /\ X = ( t ( .r ` R ) x ) ) -> -. x e. ( Unit ` R ) ) : No typesetting found for |- ( ( ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) /\ t e. B ) /\ X = ( t ( .r ` R ) x ) ) -> -. x e. ( Unit ` R ) ) with typecode |-
51 33 50 olcnd Could not format ( ( ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) /\ t e. B ) /\ X = ( t ( .r ` R ) x ) ) -> t e. ( Unit ` R ) ) : No typesetting found for |- ( ( ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) /\ t e. B ) /\ X = ( t ( .r ` R ) x ) ) -> t e. ( Unit ` R ) ) with typecode |-
52 28 eqcomd Could not format ( ( ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) /\ t e. B ) /\ X = ( t ( .r ` R ) x ) ) -> ( t ( .r ` R ) x ) = X ) : No typesetting found for |- ( ( ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) /\ t e. B ) /\ X = ( t ( .r ` R ) x ) ) -> ( t ( .r ` R ) x ) = X ) with typecode |-
53 1 2 17 19 20 21 22 26 51 52 dvdsruassoi Could not format ( ( ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) /\ t e. B ) /\ X = ( t ( .r ` R ) x ) ) -> ( x ( ||r ` R ) X /\ X ( ||r ` R ) x ) ) : No typesetting found for |- ( ( ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) /\ t e. B ) /\ X = ( t ( .r ` R ) x ) ) -> ( x ( ||r ` R ) X /\ X ( ||r ` R ) x ) ) with typecode |-
54 1 2 17 19 20 26 rspsnasso Could not format ( ( ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) /\ t e. B ) /\ X = ( t ( .r ` R ) x ) ) -> ( ( x ( ||r ` R ) X /\ X ( ||r ` R ) x ) <-> ( K ` { X } ) = ( K ` { x } ) ) ) : No typesetting found for |- ( ( ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) /\ t e. B ) /\ X = ( t ( .r ` R ) x ) ) -> ( ( x ( ||r ` R ) X /\ X ( ||r ` R ) x ) <-> ( K ` { X } ) = ( K ` { x } ) ) ) with typecode |-
55 53 54 mpbid Could not format ( ( ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) /\ t e. B ) /\ X = ( t ( .r ` R ) x ) ) -> ( K ` { X } ) = ( K ` { x } ) ) : No typesetting found for |- ( ( ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) /\ t e. B ) /\ X = ( t ( .r ` R ) x ) ) -> ( K ` { X } ) = ( K ` { x } ) ) with typecode |-
56 55 35 eqtr4d Could not format ( ( ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) /\ t e. B ) /\ X = ( t ( .r ` R ) x ) ) -> ( K ` { X } ) = k ) : No typesetting found for |- ( ( ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) /\ t e. B ) /\ X = ( t ( .r ` R ) x ) ) -> ( K ` { X } ) = k ) with typecode |-
57 4 56 eqtr2id Could not format ( ( ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) /\ t e. B ) /\ X = ( t ( .r ` R ) x ) ) -> k = M ) : No typesetting found for |- ( ( ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) /\ t e. B ) /\ X = ( t ( .r ` R ) x ) ) -> k = M ) with typecode |-
58 41 simpld Could not format ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) -> -. k = M ) : No typesetting found for |- ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) -> -. k = M ) with typecode |-
59 58 ad4antr Could not format ( ( ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) /\ t e. B ) /\ X = ( t ( .r ` R ) x ) ) -> -. k = M ) : No typesetting found for |- ( ( ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) /\ t e. B ) /\ X = ( t ( .r ` R ) x ) ) -> -. k = M ) with typecode |-
60 57 59 pm2.21dd Could not format ( ( ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) /\ t e. B ) /\ X = ( t ( .r ` R ) x ) ) -> M e. ( MaxIdeal ` R ) ) : No typesetting found for |- ( ( ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) /\ t e. B ) /\ X = ( t ( .r ` R ) x ) ) -> M e. ( MaxIdeal ` R ) ) with typecode |-
61 38 simpld Could not format ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) -> M C_ k ) : No typesetting found for |- ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) -> M C_ k ) with typecode |-
62 61 ad2antrr Could not format ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) -> M C_ k ) : No typesetting found for |- ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) -> M C_ k ) with typecode |-
63 6 snssd φ X B
64 2 1 rspssid R Ring X B X K X
65 23 63 64 syl2anc φ X K X
66 65 4 sseqtrrdi φ X M
67 snssg X B X M X M
68 67 biimpar X B X M X M
69 6 66 68 syl2anc φ X M
70 69 ad6antr Could not format ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) -> X e. M ) : No typesetting found for |- ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) -> X e. M ) with typecode |-
71 62 70 sseldd Could not format ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) -> X e. k ) : No typesetting found for |- ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) -> X e. k ) with typecode |-
72 71 34 eleqtrd Could not format ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) -> X e. ( K ` { x } ) ) : No typesetting found for |- ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) -> X e. ( K ` { x } ) ) with typecode |-
73 1 22 2 rspsnel R Ring x B X K x t B X = t R x
74 73 biimpa R Ring x B X K x t B X = t R x
75 25 18 72 74 syl21anc Could not format ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) -> E. t e. B X = ( t ( .r ` R ) x ) ) : No typesetting found for |- ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) -> E. t e. B X = ( t ( .r ` R ) x ) ) with typecode |-
76 60 75 r19.29a Could not format ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) -> M e. ( MaxIdeal ` R ) ) : No typesetting found for |- ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) -> M e. ( MaxIdeal ` R ) ) with typecode |-
77 simplr Could not format ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) -> k e. ( LIdeal ` R ) ) : No typesetting found for |- ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) -> k e. ( LIdeal ` R ) ) with typecode |-
78 10 elin2d φ R LPIR
79 eqid LPIdeal R = LPIdeal R
80 eqid LIdeal R = LIdeal R
81 79 80 islpir R LPIR R Ring LIdeal R = LPIdeal R
82 81 simprbi R LPIR LIdeal R = LPIdeal R
83 78 82 syl φ LIdeal R = LPIdeal R
84 83 ad4antr Could not format ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) -> ( LIdeal ` R ) = ( LPIdeal ` R ) ) : No typesetting found for |- ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) -> ( LIdeal ` R ) = ( LPIdeal ` R ) ) with typecode |-
85 77 84 eleqtrd Could not format ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) -> k e. ( LPIdeal ` R ) ) : No typesetting found for |- ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) -> k e. ( LPIdeal ` R ) ) with typecode |-
86 79 2 1 islpidl R Ring k LPIdeal R x B k = K x
87 86 biimpa R Ring k LPIdeal R x B k = K x
88 24 85 87 syl2anc Could not format ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) -> E. x e. B k = ( K ` { x } ) ) : No typesetting found for |- ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) -> E. x e. B k = ( K ` { x } ) ) with typecode |-
89 76 88 r19.29a Could not format ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) -> M e. ( MaxIdeal ` R ) ) : No typesetting found for |- ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) -> M e. ( MaxIdeal ` R ) ) with typecode |-
90 8 ad2antrr Could not format ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) -> M e. ( LIdeal ` R ) ) : No typesetting found for |- ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) -> M e. ( LIdeal ` R ) ) with typecode |-
91 31 21 irrednu X Irred R ¬ X Unit R
92 91 adantl φ X Irred R ¬ X Unit R
93 21 2 4 1 6 11 unitpidl1 φ M = B X Unit R
94 93 adantr φ X Irred R M = B X Unit R
95 94 necon3abid φ X Irred R M B ¬ X Unit R
96 92 95 mpbird φ X Irred R M B
97 96 adantr Could not format ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) -> M =/= B ) : No typesetting found for |- ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) -> M =/= B ) with typecode |-
98 90 97 jca Could not format ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) -> ( M e. ( LIdeal ` R ) /\ M =/= B ) ) : No typesetting found for |- ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) -> ( M e. ( LIdeal ` R ) /\ M =/= B ) ) with typecode |-
99 1 ismxidl Could not format ( R e. Ring -> ( M e. ( MaxIdeal ` R ) <-> ( M e. ( LIdeal ` R ) /\ M =/= B /\ A. k e. ( LIdeal ` R ) ( M C_ k -> ( k = M \/ k = B ) ) ) ) ) : No typesetting found for |- ( R e. Ring -> ( M e. ( MaxIdeal ` R ) <-> ( M e. ( LIdeal ` R ) /\ M =/= B /\ A. k e. ( LIdeal ` R ) ( M C_ k -> ( k = M \/ k = B ) ) ) ) ) with typecode |-
100 23 99 syl Could not format ( ph -> ( M e. ( MaxIdeal ` R ) <-> ( M e. ( LIdeal ` R ) /\ M =/= B /\ A. k e. ( LIdeal ` R ) ( M C_ k -> ( k = M \/ k = B ) ) ) ) ) : No typesetting found for |- ( ph -> ( M e. ( MaxIdeal ` R ) <-> ( M e. ( LIdeal ` R ) /\ M =/= B /\ A. k e. ( LIdeal ` R ) ( M C_ k -> ( k = M \/ k = B ) ) ) ) ) with typecode |-
101 df-3an M LIdeal R M B k LIdeal R M k k = M k = B M LIdeal R M B k LIdeal R M k k = M k = B
102 100 101 bitrdi Could not format ( ph -> ( M e. ( MaxIdeal ` R ) <-> ( ( M e. ( LIdeal ` R ) /\ M =/= B ) /\ A. k e. ( LIdeal ` R ) ( M C_ k -> ( k = M \/ k = B ) ) ) ) ) : No typesetting found for |- ( ph -> ( M e. ( MaxIdeal ` R ) <-> ( ( M e. ( LIdeal ` R ) /\ M =/= B ) /\ A. k e. ( LIdeal ` R ) ( M C_ k -> ( k = M \/ k = B ) ) ) ) ) with typecode |-
103 102 notbid Could not format ( ph -> ( -. M e. ( MaxIdeal ` R ) <-> -. ( ( M e. ( LIdeal ` R ) /\ M =/= B ) /\ A. k e. ( LIdeal ` R ) ( M C_ k -> ( k = M \/ k = B ) ) ) ) ) : No typesetting found for |- ( ph -> ( -. M e. ( MaxIdeal ` R ) <-> -. ( ( M e. ( LIdeal ` R ) /\ M =/= B ) /\ A. k e. ( LIdeal ` R ) ( M C_ k -> ( k = M \/ k = B ) ) ) ) ) with typecode |-
104 103 biimpa Could not format ( ( ph /\ -. M e. ( MaxIdeal ` R ) ) -> -. ( ( M e. ( LIdeal ` R ) /\ M =/= B ) /\ A. k e. ( LIdeal ` R ) ( M C_ k -> ( k = M \/ k = B ) ) ) ) : No typesetting found for |- ( ( ph /\ -. M e. ( MaxIdeal ` R ) ) -> -. ( ( M e. ( LIdeal ` R ) /\ M =/= B ) /\ A. k e. ( LIdeal ` R ) ( M C_ k -> ( k = M \/ k = B ) ) ) ) with typecode |-
105 104 adantlr Could not format ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) -> -. ( ( M e. ( LIdeal ` R ) /\ M =/= B ) /\ A. k e. ( LIdeal ` R ) ( M C_ k -> ( k = M \/ k = B ) ) ) ) : No typesetting found for |- ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) -> -. ( ( M e. ( LIdeal ` R ) /\ M =/= B ) /\ A. k e. ( LIdeal ` R ) ( M C_ k -> ( k = M \/ k = B ) ) ) ) with typecode |-
106 98 105 mpnanrd Could not format ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) -> -. A. k e. ( LIdeal ` R ) ( M C_ k -> ( k = M \/ k = B ) ) ) : No typesetting found for |- ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) -> -. A. k e. ( LIdeal ` R ) ( M C_ k -> ( k = M \/ k = B ) ) ) with typecode |-
107 rexnal k LIdeal R ¬ M k k = M k = B ¬ k LIdeal R M k k = M k = B
108 106 107 sylibr Could not format ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) -> E. k e. ( LIdeal ` R ) -. ( M C_ k -> ( k = M \/ k = B ) ) ) : No typesetting found for |- ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) -> E. k e. ( LIdeal ` R ) -. ( M C_ k -> ( k = M \/ k = B ) ) ) with typecode |-
109 89 108 r19.29a Could not format ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) -> M e. ( MaxIdeal ` R ) ) : No typesetting found for |- ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) -> M e. ( MaxIdeal ` R ) ) with typecode |-
110 109 pm2.18da Could not format ( ( ph /\ X e. ( Irred ` R ) ) -> M e. ( MaxIdeal ` R ) ) : No typesetting found for |- ( ( ph /\ X e. ( Irred ` R ) ) -> M e. ( MaxIdeal ` R ) ) with typecode |-
111 16 110 impbida Could not format ( ph -> ( M e. ( MaxIdeal ` R ) <-> X e. ( Irred ` R ) ) ) : No typesetting found for |- ( ph -> ( M e. ( MaxIdeal ` R ) <-> X e. ( Irred ` R ) ) ) with typecode |-