Metamath Proof Explorer


Theorem mxidlirredi

Description: In an integral domain, the generator of a maximal ideal is irreducible. (Contributed by Thierry Arnoux, 22-Mar-2025)

Ref Expression
Hypotheses mxidlirredi.b B = Base R
mxidlirredi.k K = RSpan R
mxidlirredi.0 0 ˙ = 0 R
mxidlirredi.m M = K X
mxidlirredi.r φ R IDomn
mxidlirredi.x φ X B
mxidlirredi.y φ X 0 ˙
mxidlirredi.1 No typesetting found for |- ( ph -> M e. ( MaxIdeal ` R ) ) with typecode |-
Assertion mxidlirredi φ X Irred R

Proof

Step Hyp Ref Expression
1 mxidlirredi.b B = Base R
2 mxidlirredi.k K = RSpan R
3 mxidlirredi.0 0 ˙ = 0 R
4 mxidlirredi.m M = K X
5 mxidlirredi.r φ R IDomn
6 mxidlirredi.x φ X B
7 mxidlirredi.y φ X 0 ˙
8 mxidlirredi.1 Could not format ( ph -> M e. ( MaxIdeal ` R ) ) : No typesetting found for |- ( ph -> M e. ( MaxIdeal ` R ) ) with typecode |-
9 5 idomringd φ R Ring
10 1 mxidlnr Could not format ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) -> M =/= B ) : No typesetting found for |- ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) -> M =/= B ) with typecode |-
11 9 8 10 syl2anc φ M B
12 eqid Unit R = Unit R
13 12 2 4 1 6 5 unitpidl1 φ M = B X Unit R
14 13 necon3abid φ M B ¬ X Unit R
15 11 14 mpbid φ ¬ X Unit R
16 6 15 eldifd φ X B Unit R
17 9 ad3antrrr φ f B Unit R g B Unit R f R g = X R Ring
18 8 ad3antrrr Could not format ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) -> M e. ( MaxIdeal ` R ) ) : No typesetting found for |- ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) -> M e. ( MaxIdeal ` R ) ) with typecode |-
19 simplr φ f B Unit R g B Unit R f R g = X g B Unit R
20 19 eldifad φ f B Unit R g B Unit R f R g = X g B
21 20 snssd φ f B Unit R g B Unit R f R g = X g B
22 eqid LIdeal R = LIdeal R
23 2 1 22 rspcl R Ring g B K g LIdeal R
24 17 21 23 syl2anc φ f B Unit R g B Unit R f R g = X K g LIdeal R
25 9 ad4antr φ f B Unit R g B Unit R f R g = X x M R Ring
26 25 ad2antrr φ f B Unit R g B Unit R f R g = X x M q B x = q R X R Ring
27 simp-5r φ f B Unit R g B Unit R f R g = X x M q B x = q R X g B Unit R
28 27 eldifad φ f B Unit R g B Unit R f R g = X x M q B x = q R X g B
29 eqid R = R
30 simplr φ f B Unit R g B Unit R f R g = X x M q B x = q R X q B
31 simp-6r φ f B Unit R g B Unit R f R g = X x M q B x = q R X f B Unit R
32 31 eldifad φ f B Unit R g B Unit R f R g = X x M q B x = q R X f B
33 1 29 26 30 32 ringcld φ f B Unit R g B Unit R f R g = X x M q B x = q R X q R f B
34 oveq1 y = q R f y R g = q R f R g
35 34 eqeq2d y = q R f x = y R g x = q R f R g
36 35 adantl φ f B Unit R g B Unit R f R g = X x M q B x = q R X y = q R f x = y R g x = q R f R g
37 simp-4r φ f B Unit R g B Unit R f R g = X x M q B x = q R X f R g = X
38 37 oveq2d φ f B Unit R g B Unit R f R g = X x M q B x = q R X q R f R g = q R X
39 1 29 26 30 32 28 ringassd φ f B Unit R g B Unit R f R g = X x M q B x = q R X q R f R g = q R f R g
40 simpr φ f B Unit R g B Unit R f R g = X x M q B x = q R X x = q R X
41 38 39 40 3eqtr4rd φ f B Unit R g B Unit R f R g = X x M q B x = q R X x = q R f R g
42 33 36 41 rspcedvd φ f B Unit R g B Unit R f R g = X x M q B x = q R X y B x = y R g
43 1 29 2 rspsnel R Ring g B x K g y B x = y R g
44 43 biimpar R Ring g B y B x = y R g x K g
45 26 28 42 44 syl21anc φ f B Unit R g B Unit R f R g = X x M q B x = q R X x K g
46 6 ad4antr φ f B Unit R g B Unit R f R g = X x M X B
47 simpr φ f B Unit R g B Unit R f R g = X x M x M
48 47 4 eleqtrdi φ f B Unit R g B Unit R f R g = X x M x K X
49 1 29 2 rspsnel R Ring X B x K X q B x = q R X
50 49 biimpa R Ring X B x K X q B x = q R X
51 25 46 48 50 syl21anc φ f B Unit R g B Unit R f R g = X x M q B x = q R X
52 45 51 r19.29a φ f B Unit R g B Unit R f R g = X x M x K g
53 52 ex φ f B Unit R g B Unit R f R g = X x M x K g
54 53 ssrdv φ f B Unit R g B Unit R f R g = X M K g
55 2 1 rspssid R Ring g B g K g
56 vex g V
57 56 snss g K g g K g
58 55 57 sylibr R Ring g B g K g
59 17 21 58 syl2anc φ f B Unit R g B Unit R f R g = X g K g
60 df-idom IDomn = CRing Domn
61 5 60 eleqtrdi φ R CRing Domn
62 61 elin1d φ R CRing
63 62 ad6antr φ f B Unit R g B Unit R f R g = X g M r B g = r R X R CRing
64 simplr φ f B Unit R g B Unit R f R g = X g M r B g = r R X r B
65 simp-6r φ f B Unit R g B Unit R f R g = X g M r B g = r R X f B Unit R
66 65 eldifad φ f B Unit R g B Unit R f R g = X g M r B g = r R X f B
67 20 ad3antrrr φ f B Unit R g B Unit R f R g = X g M r B g = r R X g B
68 simpr φ f B Unit R g B Unit R f R g = X g M r B g = r R X g = 0 ˙ g = 0 ˙
69 68 oveq2d φ f B Unit R g B Unit R f R g = X g M r B g = r R X g = 0 ˙ f R g = f R 0 ˙
70 simp-5r φ f B Unit R g B Unit R f R g = X g M r B g = r R X g = 0 ˙ f R g = X
71 17 adantr φ f B Unit R g B Unit R f R g = X g M R Ring
72 71 ad3antrrr φ f B Unit R g B Unit R f R g = X g M r B g = r R X g = 0 ˙ R Ring
73 66 adantr φ f B Unit R g B Unit R f R g = X g M r B g = r R X g = 0 ˙ f B
74 1 29 3 ringrz R Ring f B f R 0 ˙ = 0 ˙
75 72 73 74 syl2anc φ f B Unit R g B Unit R f R g = X g M r B g = r R X g = 0 ˙ f R 0 ˙ = 0 ˙
76 69 70 75 3eqtr3d φ f B Unit R g B Unit R f R g = X g M r B g = r R X g = 0 ˙ X = 0 ˙
77 7 neneqd φ ¬ X = 0 ˙
78 77 ad7antr φ f B Unit R g B Unit R f R g = X g M r B g = r R X g = 0 ˙ ¬ X = 0 ˙
79 76 78 pm2.65da φ f B Unit R g B Unit R f R g = X g M r B g = r R X ¬ g = 0 ˙
80 79 neqned φ f B Unit R g B Unit R f R g = X g M r B g = r R X g 0 ˙
81 eldifsn g B 0 ˙ g B g 0 ˙
82 67 80 81 sylanbrc φ f B Unit R g B Unit R f R g = X g M r B g = r R X g B 0 ˙
83 71 ad2antrr φ f B Unit R g B Unit R f R g = X g M r B g = r R X R Ring
84 1 29 83 64 66 ringcld φ f B Unit R g B Unit R f R g = X g M r B g = r R X r R f B
85 eqid 1 R = 1 R
86 1 85 ringidcl R Ring 1 R B
87 9 86 syl φ 1 R B
88 87 ad6antr φ f B Unit R g B Unit R f R g = X g M r B g = r R X 1 R B
89 5 ad6antr φ f B Unit R g B Unit R f R g = X g M r B g = r R X R IDomn
90 1 29 85 83 67 ringlidmd φ f B Unit R g B Unit R f R g = X g M r B g = r R X 1 R R g = g
91 simpr φ f B Unit R g B Unit R f R g = X g M r B g = r R X g = r R X
92 1 29 83 64 66 67 ringassd φ f B Unit R g B Unit R f R g = X g M r B g = r R X r R f R g = r R f R g
93 simp-4r φ f B Unit R g B Unit R f R g = X g M r B g = r R X f R g = X
94 93 oveq2d φ f B Unit R g B Unit R f R g = X g M r B g = r R X r R f R g = r R X
95 92 94 eqtr2d φ f B Unit R g B Unit R f R g = X g M r B g = r R X r R X = r R f R g
96 90 91 95 3eqtrrd φ f B Unit R g B Unit R f R g = X g M r B g = r R X r R f R g = 1 R R g
97 1 3 29 82 84 88 89 96 idomrcan φ f B Unit R g B Unit R f R g = X g M r B g = r R X r R f = 1 R
98 12 85 1unit R Ring 1 R Unit R
99 9 98 syl φ 1 R Unit R
100 99 ad6antr φ f B Unit R g B Unit R f R g = X g M r B g = r R X 1 R Unit R
101 97 100 eqeltrd φ f B Unit R g B Unit R f R g = X g M r B g = r R X r R f Unit R
102 12 29 1 unitmulclb R CRing r B f B r R f Unit R r Unit R f Unit R
103 102 simplbda R CRing r B f B r R f Unit R f Unit R
104 63 64 66 101 103 syl31anc φ f B Unit R g B Unit R f R g = X g M r B g = r R X f Unit R
105 6 ad4antr φ f B Unit R g B Unit R f R g = X g M X B
106 simpr φ f B Unit R g B Unit R f R g = X g M g M
107 106 4 eleqtrdi φ f B Unit R g B Unit R f R g = X g M g K X
108 1 29 2 rspsnel R Ring X B g K X r B g = r R X
109 108 biimpa R Ring X B g K X r B g = r R X
110 71 105 107 109 syl21anc φ f B Unit R g B Unit R f R g = X g M r B g = r R X
111 104 110 r19.29a φ f B Unit R g B Unit R f R g = X g M f Unit R
112 simp-4r φ f B Unit R g B Unit R f R g = X g M f B Unit R
113 112 eldifbd φ f B Unit R g B Unit R f R g = X g M ¬ f Unit R
114 111 113 pm2.65da φ f B Unit R g B Unit R f R g = X ¬ g M
115 59 114 eldifd φ f B Unit R g B Unit R f R g = X g K g M
116 1 17 18 24 54 115 mxidlmaxv φ f B Unit R g B Unit R f R g = X K g = B
117 eqid K g = K g
118 5 ad3antrrr φ f B Unit R g B Unit R f R g = X R IDomn
119 12 2 117 1 20 118 unitpidl1 φ f B Unit R g B Unit R f R g = X K g = B g Unit R
120 116 119 mpbid φ f B Unit R g B Unit R f R g = X g Unit R
121 19 eldifbd φ f B Unit R g B Unit R f R g = X ¬ g Unit R
122 120 121 pm2.65da φ f B Unit R g B Unit R ¬ f R g = X
123 122 anasss φ f B Unit R g B Unit R ¬ f R g = X
124 123 neqned φ f B Unit R g B Unit R f R g X
125 124 ralrimivva φ f B Unit R g B Unit R f R g X
126 eqid Irred R = Irred R
127 eqid B Unit R = B Unit R
128 1 12 126 127 29 isirred X Irred R X B Unit R f B Unit R g B Unit R f R g X
129 16 125 128 sylanbrc φ X Irred R