Metamath Proof Explorer


Theorem mxidlmaxv

Description: An ideal I strictly containing a maximal ideal M is the whole ring B . (Contributed by Thierry Arnoux, 9-Mar-2025)

Ref Expression
Hypotheses mxidlmaxv.1 B = Base R
mxidlmaxv.2 φ R Ring
mxidlmaxv.3 No typesetting found for |- ( ph -> M e. ( MaxIdeal ` R ) ) with typecode |-
mxidlmaxv.4 φ I LIdeal R
mxidlmaxv.5 φ M I
mxidlmaxv.6 φ X I M
Assertion mxidlmaxv φ I = B

Proof

Step Hyp Ref Expression
1 mxidlmaxv.1 B = Base R
2 mxidlmaxv.2 φ R Ring
3 mxidlmaxv.3 Could not format ( ph -> M e. ( MaxIdeal ` R ) ) : No typesetting found for |- ( ph -> M e. ( MaxIdeal ` R ) ) with typecode |-
4 mxidlmaxv.4 φ I LIdeal R
5 mxidlmaxv.5 φ M I
6 mxidlmaxv.6 φ X I M
7 1 mxidlmax Could not format ( ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) /\ ( I e. ( LIdeal ` R ) /\ M C_ I ) ) -> ( I = M \/ I = B ) ) : No typesetting found for |- ( ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) /\ ( I e. ( LIdeal ` R ) /\ M C_ I ) ) -> ( I = M \/ I = B ) ) with typecode |-
8 2 3 4 5 7 syl22anc φ I = M I = B
9 6 eldifad φ X I
10 6 eldifbd φ ¬ X M
11 nelne1 X I ¬ X M I M
12 9 10 11 syl2anc φ I M
13 12 neneqd φ ¬ I = M
14 8 13 orcnd φ I = B