Metamath Proof Explorer


Theorem mzpcl1

Description: Defining property 1 of a polynomially closed function set P : it contains all constant functions. (Contributed by Stefan O'Rear, 4-Oct-2014)

Ref Expression
Assertion mzpcl1 P mzPolyCld V F V × F P

Proof

Step Hyp Ref Expression
1 simpr P mzPolyCld V F F
2 simpl P mzPolyCld V F P mzPolyCld V
3 elfvex P mzPolyCld V V V
4 3 adantr P mzPolyCld V F V V
5 elmzpcl V V P mzPolyCld V P V f V × f P f V g V g f P f P g P f + f g P f × f g P
6 4 5 syl P mzPolyCld V F P mzPolyCld V P V f V × f P f V g V g f P f P g P f + f g P f × f g P
7 2 6 mpbid P mzPolyCld V F P V f V × f P f V g V g f P f P g P f + f g P f × f g P
8 simprll P V f V × f P f V g V g f P f P g P f + f g P f × f g P f V × f P
9 7 8 syl P mzPolyCld V F f V × f P
10 sneq f = F f = F
11 10 xpeq2d f = F V × f = V × F
12 11 eleq1d f = F V × f P V × F P
13 12 rspcva F f V × f P V × F P
14 1 9 13 syl2anc P mzPolyCld V F V × F P