Metamath Proof Explorer


Theorem mzpclval

Description: Substitution lemma for mzPolyCld . (Contributed by Stefan O'Rear, 4-Oct-2014)

Ref Expression
Assertion mzpclval V V mzPolyCld V = p 𝒫 V | i V × i p j V x V x j p f p g p f + f g p f × f g p

Proof

Step Hyp Ref Expression
1 oveq2 v = V v = V
2 1 oveq2d v = V v = V
3 2 pweqd v = V 𝒫 v = 𝒫 V
4 1 xpeq1d v = V v × a = V × a
5 4 eleq1d v = V v × a p V × a p
6 5 ralbidv v = V a v × a p a V × a p
7 sneq a = i a = i
8 7 xpeq2d a = i V × a = V × i
9 8 eleq1d a = i V × a p V × i p
10 9 cbvralvw a V × a p i V × i p
11 6 10 bitrdi v = V a v × a p i V × i p
12 1 mpteq1d v = V c v c b = c V c b
13 12 eleq1d v = V c v c b p c V c b p
14 13 raleqbi1dv v = V b v c v c b p b V c V c b p
15 fveq2 b = j c b = c j
16 15 mpteq2dv b = j c V c b = c V c j
17 16 eleq1d b = j c V c b p c V c j p
18 fveq1 c = x c j = x j
19 18 cbvmptv c V c j = x V x j
20 19 eleq1i c V c j p x V x j p
21 17 20 bitrdi b = j c V c b p x V x j p
22 21 cbvralvw b V c V c b p j V x V x j p
23 14 22 bitrdi v = V b v c v c b p j V x V x j p
24 11 23 anbi12d v = V a v × a p b v c v c b p i V × i p j V x V x j p
25 24 anbi1d v = V a v × a p b v c v c b p f p g p f + f g p f × f g p i V × i p j V x V x j p f p g p f + f g p f × f g p
26 3 25 rabeqbidv v = V p 𝒫 v | a v × a p b v c v c b p f p g p f + f g p f × f g p = p 𝒫 V | i V × i p j V x V x j p f p g p f + f g p f × f g p
27 df-mzpcl mzPolyCld = v V p 𝒫 v | a v × a p b v c v c b p f p g p f + f g p f × f g p
28 ovex V V
29 28 pwex 𝒫 V V
30 29 rabex p 𝒫 V | i V × i p j V x V x j p f p g p f + f g p f × f g p V
31 26 27 30 fvmpt V V mzPolyCld V = p 𝒫 V | i V × i p j V x V x j p f p g p f + f g p f × f g p