Metamath Proof Explorer


Theorem mzpcompact2

Description: Polynomials are finitary objects and can only reference a finite number of variables, even if the index set is infinite. Thus, every polynomial can be expressed as a (uniquely minimal, although we do not prove that) polynomial on a finite number of variables, which is then extended by adding an arbitrary set of ignored variables. (Contributed by Stefan O'Rear, 9-Oct-2014)

Ref Expression
Assertion mzpcompact2 A mzPoly B a Fin b mzPoly a a B A = c B b c a

Proof

Step Hyp Ref Expression
1 elfvex A mzPoly B B V
2 fveq2 d = B mzPoly d = mzPoly B
3 2 eleq2d d = B A mzPoly d A mzPoly B
4 sseq2 d = B a d a B
5 oveq2 d = B d = B
6 5 mpteq1d d = B c d b c a = c B b c a
7 6 eqeq2d d = B A = c d b c a A = c B b c a
8 4 7 anbi12d d = B a d A = c d b c a a B A = c B b c a
9 8 2rexbidv d = B a Fin b mzPoly a a d A = c d b c a a Fin b mzPoly a a B A = c B b c a
10 3 9 imbi12d d = B A mzPoly d a Fin b mzPoly a a d A = c d b c a A mzPoly B a Fin b mzPoly a a B A = c B b c a
11 vex d V
12 11 mzpcompact2lem A mzPoly d a Fin b mzPoly a a d A = c d b c a
13 10 12 vtoclg B V A mzPoly B a Fin b mzPoly a a B A = c B b c a
14 1 13 mpcom A mzPoly B a Fin b mzPoly a a B A = c B b c a