| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|
| 2 |
1
|
mpteq2dv |
|
| 3 |
2
|
eleq1d |
|
| 4 |
3
|
imbi2d |
|
| 5 |
|
oveq2 |
|
| 6 |
5
|
mpteq2dv |
|
| 7 |
6
|
eleq1d |
|
| 8 |
7
|
imbi2d |
|
| 9 |
|
oveq2 |
|
| 10 |
9
|
mpteq2dv |
|
| 11 |
10
|
eleq1d |
|
| 12 |
11
|
imbi2d |
|
| 13 |
|
oveq2 |
|
| 14 |
13
|
mpteq2dv |
|
| 15 |
14
|
eleq1d |
|
| 16 |
15
|
imbi2d |
|
| 17 |
|
mzpf |
|
| 18 |
|
zsscn |
|
| 19 |
|
fss |
|
| 20 |
17 18 19
|
sylancl |
|
| 21 |
|
eqid |
|
| 22 |
21
|
fmpt |
|
| 23 |
20 22
|
sylibr |
|
| 24 |
|
nfra1 |
|
| 25 |
|
rspa |
|
| 26 |
25
|
exp0d |
|
| 27 |
24 26
|
mpteq2da |
|
| 28 |
23 27
|
syl |
|
| 29 |
|
elfvex |
|
| 30 |
|
1z |
|
| 31 |
|
mzpconstmpt |
|
| 32 |
29 30 31
|
sylancl |
|
| 33 |
28 32
|
eqeltrd |
|
| 34 |
23
|
3ad2ant2 |
|
| 35 |
|
simp1 |
|
| 36 |
|
nfv |
|
| 37 |
24 36
|
nfan |
|
| 38 |
25
|
adantlr |
|
| 39 |
|
simplr |
|
| 40 |
38 39
|
expp1d |
|
| 41 |
37 40
|
mpteq2da |
|
| 42 |
34 35 41
|
syl2anc |
|
| 43 |
|
simp3 |
|
| 44 |
|
simp2 |
|
| 45 |
|
mzpmulmpt |
|
| 46 |
43 44 45
|
syl2anc |
|
| 47 |
42 46
|
eqeltrd |
|
| 48 |
47
|
3exp |
|
| 49 |
48
|
a2d |
|
| 50 |
4 8 12 16 33 49
|
nn0ind |
|
| 51 |
50
|
impcom |
|