Description: Raise a polynomial function to a (fixed) exponent. (Contributed by Stefan O'Rear, 5-Oct-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | mzpexpmpt | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 | |
|
2 | 1 | mpteq2dv | |
3 | 2 | eleq1d | |
4 | 3 | imbi2d | |
5 | oveq2 | |
|
6 | 5 | mpteq2dv | |
7 | 6 | eleq1d | |
8 | 7 | imbi2d | |
9 | oveq2 | |
|
10 | 9 | mpteq2dv | |
11 | 10 | eleq1d | |
12 | 11 | imbi2d | |
13 | oveq2 | |
|
14 | 13 | mpteq2dv | |
15 | 14 | eleq1d | |
16 | 15 | imbi2d | |
17 | mzpf | |
|
18 | zsscn | |
|
19 | fss | |
|
20 | 17 18 19 | sylancl | |
21 | eqid | |
|
22 | 21 | fmpt | |
23 | 20 22 | sylibr | |
24 | nfra1 | |
|
25 | rspa | |
|
26 | 25 | exp0d | |
27 | 24 26 | mpteq2da | |
28 | 23 27 | syl | |
29 | elfvex | |
|
30 | 1z | |
|
31 | mzpconstmpt | |
|
32 | 29 30 31 | sylancl | |
33 | 28 32 | eqeltrd | |
34 | 23 | 3ad2ant2 | |
35 | simp1 | |
|
36 | nfv | |
|
37 | 24 36 | nfan | |
38 | 25 | adantlr | |
39 | simplr | |
|
40 | 38 39 | expp1d | |
41 | 37 40 | mpteq2da | |
42 | 34 35 41 | syl2anc | |
43 | simp3 | |
|
44 | simp2 | |
|
45 | mzpmulmpt | |
|
46 | 43 44 45 | syl2anc | |
47 | 42 46 | eqeltrd | |
48 | 47 | 3exp | |
49 | 48 | a2d | |
50 | 4 8 12 16 33 49 | nn0ind | |
51 | 50 | impcom | |