Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|
2 |
1
|
mpteq2dv |
|
3 |
2
|
eleq1d |
|
4 |
3
|
imbi2d |
|
5 |
|
oveq2 |
|
6 |
5
|
mpteq2dv |
|
7 |
6
|
eleq1d |
|
8 |
7
|
imbi2d |
|
9 |
|
oveq2 |
|
10 |
9
|
mpteq2dv |
|
11 |
10
|
eleq1d |
|
12 |
11
|
imbi2d |
|
13 |
|
oveq2 |
|
14 |
13
|
mpteq2dv |
|
15 |
14
|
eleq1d |
|
16 |
15
|
imbi2d |
|
17 |
|
mzpf |
|
18 |
|
zsscn |
|
19 |
|
fss |
|
20 |
17 18 19
|
sylancl |
|
21 |
|
eqid |
|
22 |
21
|
fmpt |
|
23 |
20 22
|
sylibr |
|
24 |
|
nfra1 |
|
25 |
|
rspa |
|
26 |
25
|
exp0d |
|
27 |
24 26
|
mpteq2da |
|
28 |
23 27
|
syl |
|
29 |
|
elfvex |
|
30 |
|
1z |
|
31 |
|
mzpconstmpt |
|
32 |
29 30 31
|
sylancl |
|
33 |
28 32
|
eqeltrd |
|
34 |
23
|
3ad2ant2 |
|
35 |
|
simp1 |
|
36 |
|
nfv |
|
37 |
24 36
|
nfan |
|
38 |
25
|
adantlr |
|
39 |
|
simplr |
|
40 |
38 39
|
expp1d |
|
41 |
37 40
|
mpteq2da |
|
42 |
34 35 41
|
syl2anc |
|
43 |
|
simp3 |
|
44 |
|
simp2 |
|
45 |
|
mzpmulmpt |
|
46 |
43 44 45
|
syl2anc |
|
47 |
42 46
|
eqeltrd |
|
48 |
47
|
3exp |
|
49 |
48
|
a2d |
|
50 |
4 8 12 16 33 49
|
nn0ind |
|
51 |
50
|
impcom |
|