Metamath Proof Explorer


Theorem mzpf

Description: A polynomial function is a function from the coordinate space to the integers. (Contributed by Stefan O'Rear, 5-Oct-2014)

Ref Expression
Assertion mzpf F mzPoly V F : V

Proof

Step Hyp Ref Expression
1 elfvex F mzPoly V V V
2 mzpval V V mzPoly V = mzPolyCld V
3 mzpclall V V V mzPolyCld V
4 intss1 V mzPolyCld V mzPolyCld V V
5 3 4 syl V V mzPolyCld V V
6 2 5 eqsstrd V V mzPoly V V
7 1 6 syl F mzPoly V mzPoly V V
8 7 sselda F mzPoly V F mzPoly V F V
9 8 anidms F mzPoly V F V
10 zex V
11 ovex V V
12 10 11 elmap F V F : V
13 9 12 sylib F mzPoly V F : V