Step |
Hyp |
Ref |
Expression |
1 |
|
mzpindd.co |
|
2 |
|
mzpindd.pr |
|
3 |
|
mzpindd.ad |
|
4 |
|
mzpindd.mu |
|
5 |
|
mzpindd.1 |
|
6 |
|
mzpindd.2 |
|
7 |
|
mzpindd.3 |
|
8 |
|
mzpindd.4 |
|
9 |
|
mzpindd.5 |
|
10 |
|
mzpindd.6 |
|
11 |
|
mzpindd.7 |
|
12 |
|
elfvex |
|
13 |
12
|
adantl |
|
14 |
|
mzpval |
|
15 |
14
|
adantl |
|
16 |
|
ssrab2 |
|
17 |
16
|
a1i |
|
18 |
|
ovex |
|
19 |
|
zex |
|
20 |
18 19
|
constmap |
|
21 |
20
|
adantl |
|
22 |
5
|
elrab |
|
23 |
21 1 22
|
sylanbrc |
|
24 |
23
|
ralrimiva |
|
25 |
24
|
adantr |
|
26 |
19
|
a1i |
|
27 |
|
simpllr |
|
28 |
|
simpr |
|
29 |
|
elmapg |
|
30 |
29
|
biimpa |
|
31 |
26 27 28 30
|
syl21anc |
|
32 |
|
simplr |
|
33 |
31 32
|
ffvelrnd |
|
34 |
33
|
fmpttd |
|
35 |
19 18
|
elmap |
|
36 |
34 35
|
sylibr |
|
37 |
2
|
adantlr |
|
38 |
6
|
elrab |
|
39 |
36 37 38
|
sylanbrc |
|
40 |
39
|
ralrimiva |
|
41 |
25 40
|
jca |
|
42 |
|
zaddcl |
|
43 |
42
|
adantl |
|
44 |
|
simpl |
|
45 |
|
simpr |
|
46 |
18
|
a1i |
|
47 |
|
inidm |
|
48 |
43 44 45 46 46 47
|
off |
|
49 |
48
|
ad2ant2r |
|
50 |
49
|
adantl |
|
51 |
3
|
3expb |
|
52 |
50 51
|
jca |
|
53 |
|
zmulcl |
|
54 |
53
|
adantl |
|
55 |
54 44 45 46 46 47
|
off |
|
56 |
55
|
ad2ant2r |
|
57 |
56
|
adantl |
|
58 |
4
|
3expb |
|
59 |
52 57 58
|
jca32 |
|
60 |
59
|
ex |
|
61 |
19 18
|
elmap |
|
62 |
61
|
anbi1i |
|
63 |
19 18
|
elmap |
|
64 |
63
|
anbi1i |
|
65 |
62 64
|
anbi12i |
|
66 |
19 18
|
elmap |
|
67 |
66
|
anbi1i |
|
68 |
19 18
|
elmap |
|
69 |
68
|
anbi1i |
|
70 |
67 69
|
anbi12i |
|
71 |
60 65 70
|
3imtr4g |
|
72 |
7
|
elrab |
|
73 |
8
|
elrab |
|
74 |
72 73
|
anbi12i |
|
75 |
9
|
elrab |
|
76 |
10
|
elrab |
|
77 |
75 76
|
anbi12i |
|
78 |
71 74 77
|
3imtr4g |
|
79 |
78
|
ralrimivv |
|
80 |
79
|
adantr |
|
81 |
17 41 80
|
jca32 |
|
82 |
|
elmzpcl |
|
83 |
82
|
adantl |
|
84 |
81 83
|
mpbird |
|
85 |
|
intss1 |
|
86 |
84 85
|
syl |
|
87 |
15 86
|
eqsstrd |
|
88 |
87
|
sselda |
|
89 |
88
|
an32s |
|
90 |
13 89
|
mpdan |
|
91 |
11
|
elrab |
|
92 |
91
|
simprbi |
|
93 |
90 92
|
syl |
|