Step |
Hyp |
Ref |
Expression |
1 |
|
zringbas |
|
2 |
|
eqid |
|
3 |
2 1
|
evlval |
|
4 |
3
|
rneqi |
|
5 |
|
simpl |
|
6 |
|
zringcrng |
|
7 |
6
|
a1i |
|
8 |
|
zringring |
|
9 |
1
|
subrgid |
|
10 |
8 9
|
ax-mp |
|
11 |
10
|
a1i |
|
12 |
|
simpr |
|
13 |
1 4 5 7 11 12
|
mpfconst |
|
14 |
|
simpl |
|
15 |
6
|
a1i |
|
16 |
10
|
a1i |
|
17 |
|
simpr |
|
18 |
1 4 14 15 16 17
|
mpfproj |
|
19 |
|
simp2r |
|
20 |
|
simp3r |
|
21 |
|
zringplusg |
|
22 |
4 21
|
mpfaddcl |
|
23 |
19 20 22
|
syl2anc |
|
24 |
|
zringmulr |
|
25 |
4 24
|
mpfmulcl |
|
26 |
19 20 25
|
syl2anc |
|
27 |
|
eleq1 |
|
28 |
|
eleq1 |
|
29 |
|
eleq1 |
|
30 |
|
eleq1 |
|
31 |
|
eleq1 |
|
32 |
|
eleq1 |
|
33 |
|
eleq1 |
|
34 |
13 18 23 26 27 28 29 30 31 32 33
|
mzpindd |
|
35 |
|
simprlr |
|
36 |
|
simprrr |
|
37 |
|
mzpadd |
|
38 |
35 36 37
|
syl2anc |
|
39 |
|
mzpmul |
|
40 |
35 36 39
|
syl2anc |
|
41 |
|
eleq1 |
|
42 |
|
eleq1 |
|
43 |
|
eleq1 |
|
44 |
|
eleq1 |
|
45 |
|
eleq1 |
|
46 |
|
eleq1 |
|
47 |
|
eleq1 |
|
48 |
|
mzpconst |
|
49 |
48
|
adantlr |
|
50 |
|
mzpproj |
|
51 |
50
|
adantlr |
|
52 |
|
simpr |
|
53 |
1 21 24 4 38 40 41 42 43 44 45 46 47 49 51 52
|
mpfind |
|
54 |
34 53
|
impbida |
|
55 |
54
|
eqrdv |
|
56 |
|
fvprc |
|
57 |
|
df-evl |
|
58 |
57
|
reldmmpo |
|
59 |
58
|
ovprc1 |
|
60 |
59
|
rneqd |
|
61 |
|
rn0 |
|
62 |
60 61
|
eqtrdi |
|
63 |
56 62
|
eqtr4d |
|
64 |
55 63
|
pm2.61i |
|