Metamath Proof Explorer


Theorem mzpmul

Description: The pointwise product of two polynomial functions is a polynomial function. See also mzpmulmpt . (Contributed by Stefan O'Rear, 4-Oct-2014)

Ref Expression
Assertion mzpmul A mzPoly V B mzPoly V A × f B mzPoly V

Proof

Step Hyp Ref Expression
1 elfvex A mzPoly V V V
2 1 adantr A mzPoly V B mzPoly V V V
3 mzpincl V V mzPoly V mzPolyCld V
4 2 3 syl A mzPoly V B mzPoly V mzPoly V mzPolyCld V
5 mzpcl34 mzPoly V mzPolyCld V A mzPoly V B mzPoly V A + f B mzPoly V A × f B mzPoly V
6 5 3expib mzPoly V mzPolyCld V A mzPoly V B mzPoly V A + f B mzPoly V A × f B mzPoly V
7 4 6 mpcom A mzPoly V B mzPoly V A + f B mzPoly V A × f B mzPoly V
8 7 simprd A mzPoly V B mzPoly V A × f B mzPoly V