Metamath Proof Explorer


Theorem mzpnegmpt

Description: Negation of a polynomial function. (Contributed by Stefan O'Rear, 11-Oct-2014)

Ref Expression
Assertion mzpnegmpt x V A mzPoly V x V A mzPoly V

Proof

Step Hyp Ref Expression
1 df-neg A = 0 A
2 1 mpteq2i x V A = x V 0 A
3 elfvex x V A mzPoly V V V
4 0z 0
5 mzpconstmpt V V 0 x V 0 mzPoly V
6 3 4 5 sylancl x V A mzPoly V x V 0 mzPoly V
7 mzpsubmpt x V 0 mzPoly V x V A mzPoly V x V 0 A mzPoly V
8 6 7 mpancom x V A mzPoly V x V 0 A mzPoly V
9 2 8 eqeltrid x V A mzPoly V x V A mzPoly V