Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Stefan O'Rear
Multivariate polynomials over the integers
mzpnegmpt
Next ⟩
mzpexpmpt
Metamath Proof Explorer
Ascii
Unicode
Theorem
mzpnegmpt
Description:
Negation of a polynomial function.
(Contributed by
Stefan O'Rear
, 11-Oct-2014)
Ref
Expression
Assertion
mzpnegmpt
⊢
x
∈
ℤ
V
⟼
A
∈
mzPoly
⁡
V
→
x
∈
ℤ
V
⟼
−
A
∈
mzPoly
⁡
V
Proof
Step
Hyp
Ref
Expression
1
df-neg
⊢
−
A
=
0
−
A
2
1
mpteq2i
⊢
x
∈
ℤ
V
⟼
−
A
=
x
∈
ℤ
V
⟼
0
−
A
3
elfvex
⊢
x
∈
ℤ
V
⟼
A
∈
mzPoly
⁡
V
→
V
∈
V
4
0z
⊢
0
∈
ℤ
5
mzpconstmpt
⊢
V
∈
V
∧
0
∈
ℤ
→
x
∈
ℤ
V
⟼
0
∈
mzPoly
⁡
V
6
3
4
5
sylancl
⊢
x
∈
ℤ
V
⟼
A
∈
mzPoly
⁡
V
→
x
∈
ℤ
V
⟼
0
∈
mzPoly
⁡
V
7
mzpsubmpt
⊢
x
∈
ℤ
V
⟼
0
∈
mzPoly
⁡
V
∧
x
∈
ℤ
V
⟼
A
∈
mzPoly
⁡
V
→
x
∈
ℤ
V
⟼
0
−
A
∈
mzPoly
⁡
V
8
6
7
mpancom
⊢
x
∈
ℤ
V
⟼
A
∈
mzPoly
⁡
V
→
x
∈
ℤ
V
⟼
0
−
A
∈
mzPoly
⁡
V
9
2
8
eqeltrid
⊢
x
∈
ℤ
V
⟼
A
∈
mzPoly
⁡
V
→
x
∈
ℤ
V
⟼
−
A
∈
mzPoly
⁡
V