Metamath Proof Explorer


Theorem mzpresrename

Description: A polynomial is a polynomial over all larger index sets. (Contributed by Stefan O'Rear, 5-Oct-2014) (Revised by Stefan O'Rear, 5-Jun-2015)

Ref Expression
Assertion mzpresrename W V V W F mzPoly V x W F x V mzPoly W

Proof

Step Hyp Ref Expression
1 coires1 x I V = x V
2 1 fveq2i F x I V = F x V
3 2 mpteq2i x W F x I V = x W F x V
4 simp1 W V V W F mzPoly V W V
5 simp3 W V V W F mzPoly V F mzPoly V
6 f1oi I V : V 1-1 onto V
7 f1of I V : V 1-1 onto V I V : V V
8 6 7 ax-mp I V : V V
9 fss I V : V V V W I V : V W
10 8 9 mpan V W I V : V W
11 10 3ad2ant2 W V V W F mzPoly V I V : V W
12 mzprename W V F mzPoly V I V : V W x W F x I V mzPoly W
13 4 5 11 12 syl3anc W V V W F mzPoly V x W F x I V mzPoly W
14 3 13 eqeltrrid W V V W F mzPoly V x W F x V mzPoly W