Metamath Proof Explorer


Theorem mzpsubmpt

Description: The difference of two polynomial functions is polynomial. (Contributed by Stefan O'Rear, 10-Oct-2014)

Ref Expression
Assertion mzpsubmpt x V A mzPoly V x V B mzPoly V x V A B mzPoly V

Proof

Step Hyp Ref Expression
1 nfmpt1 _ x x V A
2 1 nfel1 x x V A mzPoly V
3 nfmpt1 _ x x V B
4 3 nfel1 x x V B mzPoly V
5 2 4 nfan x x V A mzPoly V x V B mzPoly V
6 mzpf x V B mzPoly V x V B : V
7 6 ad2antlr x V A mzPoly V x V B mzPoly V x V x V B : V
8 simpr x V A mzPoly V x V B mzPoly V x V x V
9 mptfcl x V B : V x V B
10 7 8 9 sylc x V A mzPoly V x V B mzPoly V x V B
11 10 zcnd x V A mzPoly V x V B mzPoly V x V B
12 11 mulm1d x V A mzPoly V x V B mzPoly V x V -1 B = B
13 12 oveq2d x V A mzPoly V x V B mzPoly V x V A + -1 B = A + B
14 mzpf x V A mzPoly V x V A : V
15 14 ad2antrr x V A mzPoly V x V B mzPoly V x V x V A : V
16 mptfcl x V A : V x V A
17 15 8 16 sylc x V A mzPoly V x V B mzPoly V x V A
18 17 zcnd x V A mzPoly V x V B mzPoly V x V A
19 18 11 negsubd x V A mzPoly V x V B mzPoly V x V A + B = A B
20 13 19 eqtr2d x V A mzPoly V x V B mzPoly V x V A B = A + -1 B
21 5 20 mpteq2da x V A mzPoly V x V B mzPoly V x V A B = x V A + -1 B
22 elfvex x V B mzPoly V V V
23 neg1z 1
24 mzpconstmpt V V 1 x V 1 mzPoly V
25 22 23 24 sylancl x V B mzPoly V x V 1 mzPoly V
26 mzpmulmpt x V 1 mzPoly V x V B mzPoly V x V -1 B mzPoly V
27 25 26 mpancom x V B mzPoly V x V -1 B mzPoly V
28 mzpaddmpt x V A mzPoly V x V -1 B mzPoly V x V A + -1 B mzPoly V
29 27 28 sylan2 x V A mzPoly V x V B mzPoly V x V A + -1 B mzPoly V
30 21 29 eqeltrd x V A mzPoly V x V B mzPoly V x V A B mzPoly V