Metamath Proof Explorer


Theorem mzpval

Description: Value of the mzPoly function. (Contributed by Stefan O'Rear, 4-Oct-2014)

Ref Expression
Assertion mzpval V V mzPoly V = mzPolyCld V

Proof

Step Hyp Ref Expression
1 mzpcln0 V V mzPolyCld V
2 intex mzPolyCld V mzPolyCld V V
3 1 2 sylib V V mzPolyCld V V
4 fveq2 v = V mzPolyCld v = mzPolyCld V
5 4 inteqd v = V mzPolyCld v = mzPolyCld V
6 df-mzp mzPoly = v V mzPolyCld v
7 5 6 fvmptg V V mzPolyCld V V mzPoly V = mzPolyCld V
8 3 7 mpdan V V mzPoly V = mzPolyCld V