Metamath Proof Explorer


Theorem n0el

Description: Negated membership of the empty set in another class. (Contributed by Rodolfo Medina, 25-Sep-2010)

Ref Expression
Assertion n0el ¬ A x A u u x

Proof

Step Hyp Ref Expression
1 df-ral x A ¬ u ¬ u x x x A ¬ u ¬ u x
2 df-ex u u x ¬ u ¬ u x
3 2 ralbii x A u u x x A ¬ u ¬ u x
4 alnex x ¬ x A u ¬ u x ¬ x x A u ¬ u x
5 imnang x x A ¬ u ¬ u x x ¬ x A u ¬ u x
6 0el A x A u ¬ u x
7 df-rex x A u ¬ u x x x A u ¬ u x
8 6 7 bitri A x x A u ¬ u x
9 8 notbii ¬ A ¬ x x A u ¬ u x
10 4 5 9 3bitr4ri ¬ A x x A ¬ u ¬ u x
11 1 3 10 3bitr4ri ¬ A x A u u x