Metamath Proof Explorer


Theorem n0el3

Description: Two ways of expressing that the empty set is not an element of a class. (Contributed by Peter Mazsa, 27-May-2021)

Ref Expression
Assertion n0el3 ¬ A dom E -1 A / E -1 A = A

Proof

Step Hyp Ref Expression
1 n0elim ¬ A dom E -1 A / E -1 A = A
2 n0eldmqseq dom E -1 A / E -1 A = A ¬ A
3 1 2 impbii ¬ A dom E -1 A / E -1 A = A