Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The empty set
n0moeu
Next ⟩
rex0
Metamath Proof Explorer
Ascii
Unicode
Theorem
n0moeu
Description:
A case of equivalence of "at most one" and "only one".
(Contributed by
FL
, 6-Dec-2010)
Ref
Expression
Assertion
n0moeu
⊢
A
≠
∅
→
∃
*
x
x
∈
A
↔
∃!
x
x
∈
A
Proof
Step
Hyp
Ref
Expression
1
n0
⊢
A
≠
∅
↔
∃
x
x
∈
A
2
1
biimpi
⊢
A
≠
∅
→
∃
x
x
∈
A
3
2
biantrurd
⊢
A
≠
∅
→
∃
*
x
x
∈
A
↔
∃
x
x
∈
A
∧
∃
*
x
x
∈
A
4
df-eu
⊢
∃!
x
x
∈
A
↔
∃
x
x
∈
A
∧
∃
*
x
x
∈
A
5
3
4
bitr4di
⊢
A
≠
∅
→
∃
*
x
x
∈
A
↔
∃!
x
x
∈
A