Metamath Proof Explorer


Theorem n0moeu

Description: A case of equivalence of "at most one" and "only one". (Contributed by FL, 6-Dec-2010)

Ref Expression
Assertion n0moeu A * x x A ∃! x x A

Proof

Step Hyp Ref Expression
1 n0 A x x A
2 1 biimpi A x x A
3 2 biantrurd A * x x A x x A * x x A
4 df-eu ∃! x x A x x A * x x A
5 3 4 bitr4di A * x x A ∃! x x A