Metamath Proof Explorer


Theorem n2dvdsm1

Description: 2 does not divide -1. That means -1 is odd. (Contributed by AV, 15-Aug-2021)

Ref Expression
Assertion n2dvdsm1 ¬ 2 -1

Proof

Step Hyp Ref Expression
1 z0even 2 0
2 ax-1cn 1
3 neg1cn 1
4 1pneg1e0 1 + -1 = 0
5 2 3 4 addcomli - 1 + 1 = 0
6 1 5 breqtrri 2 - 1 + 1
7 neg1z 1
8 oddp1even 1 ¬ 2 -1 2 - 1 + 1
9 7 8 ax-mp ¬ 2 -1 2 - 1 + 1
10 6 9 mpbir ¬ 2 -1