Step |
Hyp |
Ref |
Expression |
1 |
|
frgrusgr |
|
2 |
|
usgrupgr |
|
3 |
1 2
|
syl |
|
4 |
|
eqid |
|
5 |
|
eqid |
|
6 |
4 5
|
upgr4cycl4dv4e |
|
7 |
4 5
|
isfrgr |
|
8 |
|
simplrl |
|
9 |
|
necom |
|
10 |
9
|
biimpi |
|
11 |
10
|
3ad2ant2 |
|
12 |
11
|
ad2antrl |
|
13 |
12
|
adantl |
|
14 |
|
eldifsn |
|
15 |
8 13 14
|
sylanbrc |
|
16 |
|
sneq |
|
17 |
16
|
difeq2d |
|
18 |
|
preq2 |
|
19 |
18
|
preq1d |
|
20 |
19
|
sseq1d |
|
21 |
20
|
reubidv |
|
22 |
17 21
|
raleqbidv |
|
23 |
22
|
rspcv |
|
24 |
23
|
ad3antrrr |
|
25 |
|
preq2 |
|
26 |
25
|
preq2d |
|
27 |
26
|
sseq1d |
|
28 |
27
|
reubidv |
|
29 |
28
|
rspcv |
|
30 |
15 24 29
|
sylsyld |
|
31 |
|
prcom |
|
32 |
31
|
preq1i |
|
33 |
32
|
sseq1i |
|
34 |
33
|
reubii |
|
35 |
|
simprll |
|
36 |
|
simprlr |
|
37 |
|
simpllr |
|
38 |
|
simplrr |
|
39 |
|
simprr2 |
|
40 |
39
|
adantl |
|
41 |
|
4cycl2vnunb |
|
42 |
35 36 37 38 40 41
|
syl113anc |
|
43 |
42
|
pm2.21d |
|
44 |
43
|
com12 |
|
45 |
34 44
|
sylbi |
|
46 |
30 45
|
syl6 |
|
47 |
46
|
pm2.43b |
|
48 |
47
|
adantl |
|
49 |
7 48
|
sylbi |
|
50 |
49
|
expdcom |
|
51 |
50
|
rexlimdvva |
|
52 |
51
|
rexlimivv |
|
53 |
6 52
|
syl |
|
54 |
53
|
3exp |
|
55 |
54
|
com34 |
|
56 |
55
|
com23 |
|
57 |
3 56
|
mpcom |
|
58 |
57
|
imp |
|
59 |
|
neqne |
|
60 |
58 59
|
pm2.61d1 |
|