Metamath Proof Explorer


Theorem nabbib

Description: Not equivalent wff's correspond to not equal class abstractions. (Contributed by AV, 7-Apr-2019) (Proof shortened by Wolf Lammen, 25-Nov-2019) Definitial form. (Revised by Wolf Lammen, 5-Mar-2025)

Ref Expression
Assertion nabbib x | φ x | ψ x φ ¬ ψ

Proof

Step Hyp Ref Expression
1 df-ne x | φ x | ψ ¬ x | φ = x | ψ
2 exnal x ¬ φ ψ ¬ x φ ψ
3 xor3 ¬ φ ψ φ ¬ ψ
4 3 exbii x ¬ φ ψ x φ ¬ ψ
5 2 4 bitr3i ¬ x φ ψ x φ ¬ ψ
6 abbib x | φ = x | ψ x φ ψ
7 5 6 xchnxbir ¬ x | φ = x | ψ x φ ¬ ψ
8 1 7 bitri x | φ x | ψ x φ ¬ ψ