Description: not ( a -> ( b /\ c ) ) we can show: not a implies ( b /\ c ). (Contributed by Jarvin Udandy, 7-Sep-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | nabctnabc.1 | ||
Assertion | nabctnabc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nabctnabc.1 | ||
2 | pm4.61 | ||
3 | 2 | biimpi | |
4 | 1 3 | ax-mp | |
5 | 4 | simpli | |
6 | 4 | simpri | |
7 | 5 6 | 2th | |
8 | bicom | ||
9 | 8 | biimpi | |
10 | 7 9 | ax-mp | |
11 | 10 | biimpi | |
12 | 11 | con3i | |
13 | 12 | notnotrd |