Metamath Proof Explorer


Theorem nabctnabc

Description: not ( a -> ( b /\ c ) ) we can show: not a implies ( b /\ c ). (Contributed by Jarvin Udandy, 7-Sep-2020)

Ref Expression
Hypothesis nabctnabc.1 ¬ φ ψ χ
Assertion nabctnabc ¬ φ ψ χ

Proof

Step Hyp Ref Expression
1 nabctnabc.1 ¬ φ ψ χ
2 pm4.61 ¬ φ ψ χ φ ¬ ψ χ
3 2 biimpi ¬ φ ψ χ φ ¬ ψ χ
4 1 3 ax-mp φ ¬ ψ χ
5 4 simpli φ
6 4 simpri ¬ ψ χ
7 5 6 2th φ ¬ ψ χ
8 bicom φ ¬ ψ χ ¬ ψ χ φ
9 8 biimpi φ ¬ ψ χ ¬ ψ χ φ
10 7 9 ax-mp ¬ ψ χ φ
11 10 biimpi ¬ ψ χ φ
12 11 con3i ¬ φ ¬ ¬ ψ χ
13 12 notnotrd ¬ φ ψ χ