Metamath Proof Explorer


Theorem nacsfg

Description: In a Noetherian-type closure system, all closed sets are finitely generated. (Contributed by Stefan O'Rear, 4-Apr-2015)

Ref Expression
Hypothesis isnacs.f F = mrCls C
Assertion nacsfg C NoeACS X S C g 𝒫 X Fin S = F g

Proof

Step Hyp Ref Expression
1 isnacs.f F = mrCls C
2 1 isnacs C NoeACS X C ACS X s C g 𝒫 X Fin s = F g
3 2 simprbi C NoeACS X s C g 𝒫 X Fin s = F g
4 eqeq1 s = S s = F g S = F g
5 4 rexbidv s = S g 𝒫 X Fin s = F g g 𝒫 X Fin S = F g
6 5 rspcva S C s C g 𝒫 X Fin s = F g g 𝒫 X Fin S = F g
7 3 6 sylan2 S C C NoeACS X g 𝒫 X Fin S = F g
8 7 ancoms C NoeACS X S C g 𝒫 X Fin S = F g