Metamath Proof Explorer


Theorem nacsfix

Description: An increasing sequence of closed sets in a Noetherian-type closure system eventually fixates. (Contributed by Stefan O'Rear, 4-Apr-2015)

Ref Expression
Assertion nacsfix C NoeACS X F : 0 C x 0 F x F x + 1 y 0 z y F z = F y

Proof

Step Hyp Ref Expression
1 fvssunirn F z ran F
2 simplrr C NoeACS X F : 0 C x 0 F x F x + 1 y 0 F y = ran F z y F y = ran F
3 1 2 sseqtrrid C NoeACS X F : 0 C x 0 F x F x + 1 y 0 F y = ran F z y F z F y
4 simpll3 C NoeACS X F : 0 C x 0 F x F x + 1 y 0 F y = ran F z y x 0 F x F x + 1
5 simplrl C NoeACS X F : 0 C x 0 F x F x + 1 y 0 F y = ran F z y y 0
6 simpr C NoeACS X F : 0 C x 0 F x F x + 1 y 0 F y = ran F z y z y
7 incssnn0 x 0 F x F x + 1 y 0 z y F y F z
8 4 5 6 7 syl3anc C NoeACS X F : 0 C x 0 F x F x + 1 y 0 F y = ran F z y F y F z
9 3 8 eqssd C NoeACS X F : 0 C x 0 F x F x + 1 y 0 F y = ran F z y F z = F y
10 9 ralrimiva C NoeACS X F : 0 C x 0 F x F x + 1 y 0 F y = ran F z y F z = F y
11 frn F : 0 C ran F C
12 11 3ad2ant2 C NoeACS X F : 0 C x 0 F x F x + 1 ran F C
13 elpw2g C NoeACS X ran F 𝒫 C ran F C
14 13 3ad2ant1 C NoeACS X F : 0 C x 0 F x F x + 1 ran F 𝒫 C ran F C
15 12 14 mpbird C NoeACS X F : 0 C x 0 F x F x + 1 ran F 𝒫 C
16 elex ran F 𝒫 C ran F V
17 15 16 syl C NoeACS X F : 0 C x 0 F x F x + 1 ran F V
18 ffn F : 0 C F Fn 0
19 18 3ad2ant2 C NoeACS X F : 0 C x 0 F x F x + 1 F Fn 0
20 0nn0 0 0
21 fnfvelrn F Fn 0 0 0 F 0 ran F
22 19 20 21 sylancl C NoeACS X F : 0 C x 0 F x F x + 1 F 0 ran F
23 22 ne0d C NoeACS X F : 0 C x 0 F x F x + 1 ran F
24 nn0re a 0 a
25 24 ad2antrl C NoeACS X F : 0 C x 0 F x F x + 1 a 0 b 0 a
26 nn0re b 0 b
27 26 ad2antll C NoeACS X F : 0 C x 0 F x F x + 1 a 0 b 0 b
28 simplrr C NoeACS X F : 0 C x 0 F x F x + 1 a 0 b 0 a b b 0
29 simpll3 C NoeACS X F : 0 C x 0 F x F x + 1 a 0 b 0 a b x 0 F x F x + 1
30 simplrl C NoeACS X F : 0 C x 0 F x F x + 1 a 0 b 0 a b a 0
31 nn0z a 0 a
32 nn0z b 0 b
33 eluz a b b a a b
34 31 32 33 syl2an a 0 b 0 b a a b
35 34 biimpar a 0 b 0 a b b a
36 35 adantll C NoeACS X F : 0 C x 0 F x F x + 1 a 0 b 0 a b b a
37 incssnn0 x 0 F x F x + 1 a 0 b a F a F b
38 29 30 36 37 syl3anc C NoeACS X F : 0 C x 0 F x F x + 1 a 0 b 0 a b F a F b
39 ssequn1 F a F b F a F b = F b
40 38 39 sylib C NoeACS X F : 0 C x 0 F x F x + 1 a 0 b 0 a b F a F b = F b
41 eqimss F a F b = F b F a F b F b
42 40 41 syl C NoeACS X F : 0 C x 0 F x F x + 1 a 0 b 0 a b F a F b F b
43 fveq2 c = b F c = F b
44 43 sseq2d c = b F a F b F c F a F b F b
45 44 rspcev b 0 F a F b F b c 0 F a F b F c
46 28 42 45 syl2anc C NoeACS X F : 0 C x 0 F x F x + 1 a 0 b 0 a b c 0 F a F b F c
47 simplrl C NoeACS X F : 0 C x 0 F x F x + 1 a 0 b 0 b a a 0
48 simpll3 C NoeACS X F : 0 C x 0 F x F x + 1 a 0 b 0 b a x 0 F x F x + 1
49 simplrr C NoeACS X F : 0 C x 0 F x F x + 1 a 0 b 0 b a b 0
50 eluz b a a b b a
51 32 31 50 syl2anr a 0 b 0 a b b a
52 51 biimpar a 0 b 0 b a a b
53 52 adantll C NoeACS X F : 0 C x 0 F x F x + 1 a 0 b 0 b a a b
54 incssnn0 x 0 F x F x + 1 b 0 a b F b F a
55 48 49 53 54 syl3anc C NoeACS X F : 0 C x 0 F x F x + 1 a 0 b 0 b a F b F a
56 ssequn2 F b F a F a F b = F a
57 55 56 sylib C NoeACS X F : 0 C x 0 F x F x + 1 a 0 b 0 b a F a F b = F a
58 eqimss F a F b = F a F a F b F a
59 57 58 syl C NoeACS X F : 0 C x 0 F x F x + 1 a 0 b 0 b a F a F b F a
60 fveq2 c = a F c = F a
61 60 sseq2d c = a F a F b F c F a F b F a
62 61 rspcev a 0 F a F b F a c 0 F a F b F c
63 47 59 62 syl2anc C NoeACS X F : 0 C x 0 F x F x + 1 a 0 b 0 b a c 0 F a F b F c
64 25 27 46 63 lecasei C NoeACS X F : 0 C x 0 F x F x + 1 a 0 b 0 c 0 F a F b F c
65 64 ralrimivva C NoeACS X F : 0 C x 0 F x F x + 1 a 0 b 0 c 0 F a F b F c
66 uneq1 y = F a y z = F a z
67 66 sseq1d y = F a y z w F a z w
68 67 rexbidv y = F a w ran F y z w w ran F F a z w
69 68 ralbidv y = F a z ran F w ran F y z w z ran F w ran F F a z w
70 69 ralrn F Fn 0 y ran F z ran F w ran F y z w a 0 z ran F w ran F F a z w
71 uneq2 z = F b F a z = F a F b
72 71 sseq1d z = F b F a z w F a F b w
73 72 rexbidv z = F b w ran F F a z w w ran F F a F b w
74 73 ralrn F Fn 0 z ran F w ran F F a z w b 0 w ran F F a F b w
75 sseq2 w = F c F a F b w F a F b F c
76 75 rexrn F Fn 0 w ran F F a F b w c 0 F a F b F c
77 76 ralbidv F Fn 0 b 0 w ran F F a F b w b 0 c 0 F a F b F c
78 74 77 bitrd F Fn 0 z ran F w ran F F a z w b 0 c 0 F a F b F c
79 78 ralbidv F Fn 0 a 0 z ran F w ran F F a z w a 0 b 0 c 0 F a F b F c
80 70 79 bitrd F Fn 0 y ran F z ran F w ran F y z w a 0 b 0 c 0 F a F b F c
81 19 80 syl C NoeACS X F : 0 C x 0 F x F x + 1 y ran F z ran F w ran F y z w a 0 b 0 c 0 F a F b F c
82 65 81 mpbird C NoeACS X F : 0 C x 0 F x F x + 1 y ran F z ran F w ran F y z w
83 isipodrs toInc ran F Dirset ran F V ran F y ran F z ran F w ran F y z w
84 17 23 82 83 syl3anbrc C NoeACS X F : 0 C x 0 F x F x + 1 toInc ran F Dirset
85 isnacs3 C NoeACS X C Moore X y 𝒫 C toInc y Dirset y y
86 85 simprbi C NoeACS X y 𝒫 C toInc y Dirset y y
87 86 3ad2ant1 C NoeACS X F : 0 C x 0 F x F x + 1 y 𝒫 C toInc y Dirset y y
88 fveq2 y = ran F toInc y = toInc ran F
89 88 eleq1d y = ran F toInc y Dirset toInc ran F Dirset
90 unieq y = ran F y = ran F
91 id y = ran F y = ran F
92 90 91 eleq12d y = ran F y y ran F ran F
93 89 92 imbi12d y = ran F toInc y Dirset y y toInc ran F Dirset ran F ran F
94 93 rspcva ran F 𝒫 C y 𝒫 C toInc y Dirset y y toInc ran F Dirset ran F ran F
95 15 87 94 syl2anc C NoeACS X F : 0 C x 0 F x F x + 1 toInc ran F Dirset ran F ran F
96 84 95 mpd C NoeACS X F : 0 C x 0 F x F x + 1 ran F ran F
97 fvelrnb F Fn 0 ran F ran F y 0 F y = ran F
98 19 97 syl C NoeACS X F : 0 C x 0 F x F x + 1 ran F ran F y 0 F y = ran F
99 96 98 mpbid C NoeACS X F : 0 C x 0 F x F x + 1 y 0 F y = ran F
100 10 99 reximddv C NoeACS X F : 0 C x 0 F x F x + 1 y 0 z y F z = F y