Metamath Proof Explorer


Theorem nadd32

Description: Commutative/associative law that swaps the last two terms in a triple sum. (Contributed by Scott Fenton, 20-Jan-2025)

Ref Expression
Assertion nadd32 Could not format assertion : No typesetting found for |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( ( A +no B ) +no C ) = ( ( A +no C ) +no B ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 naddcom Could not format ( ( B e. On /\ C e. On ) -> ( B +no C ) = ( C +no B ) ) : No typesetting found for |- ( ( B e. On /\ C e. On ) -> ( B +no C ) = ( C +no B ) ) with typecode |-
2 1 3adant1 Could not format ( ( A e. On /\ B e. On /\ C e. On ) -> ( B +no C ) = ( C +no B ) ) : No typesetting found for |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( B +no C ) = ( C +no B ) ) with typecode |-
3 2 oveq2d Could not format ( ( A e. On /\ B e. On /\ C e. On ) -> ( A +no ( B +no C ) ) = ( A +no ( C +no B ) ) ) : No typesetting found for |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( A +no ( B +no C ) ) = ( A +no ( C +no B ) ) ) with typecode |-
4 naddass Could not format ( ( A e. On /\ B e. On /\ C e. On ) -> ( ( A +no B ) +no C ) = ( A +no ( B +no C ) ) ) : No typesetting found for |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( ( A +no B ) +no C ) = ( A +no ( B +no C ) ) ) with typecode |-
5 naddass Could not format ( ( A e. On /\ C e. On /\ B e. On ) -> ( ( A +no C ) +no B ) = ( A +no ( C +no B ) ) ) : No typesetting found for |- ( ( A e. On /\ C e. On /\ B e. On ) -> ( ( A +no C ) +no B ) = ( A +no ( C +no B ) ) ) with typecode |-
6 5 3com23 Could not format ( ( A e. On /\ B e. On /\ C e. On ) -> ( ( A +no C ) +no B ) = ( A +no ( C +no B ) ) ) : No typesetting found for |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( ( A +no C ) +no B ) = ( A +no ( C +no B ) ) ) with typecode |-
7 3 4 6 3eqtr4d Could not format ( ( A e. On /\ B e. On /\ C e. On ) -> ( ( A +no B ) +no C ) = ( ( A +no C ) +no B ) ) : No typesetting found for |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( ( A +no B ) +no C ) = ( ( A +no C ) +no B ) ) with typecode |-