Metamath Proof Explorer


Theorem naddasslem1

Description: Lemma for naddass . Expand out the expression for natural addition of three arguments. (Contributed by Scott Fenton, 20-Jan-2025)

Ref Expression
Assertion naddasslem1 A On B On C On A + B + C = x On | a A a + B + C x b B A + b + C x c C A + B + c x

Proof

Step Hyp Ref Expression
1 naddcl A On B On A + B On
2 1 3adant3 A On B On C On A + B On
3 simp3 A On B On C On C On
4 naddov3 A On B On A + B = a On | + A × B + A × B a
5 4 3adant3 A On B On C On A + B = a On | + A × B + A × B a
6 intmin C On c On | C c = C
7 6 eqcomd C On C = c On | C c
8 7 3ad2ant3 A On B On C On C = c On | C c
9 2 3 5 8 naddunif A On B On C On A + B + C = x On | + + A × B + A × B × C + A + B × C x
10 df-3an + + A × B × C x + + A × B × C x + A + B × C x + + A × B × C x + + A × B × C x + A + B × C x
11 unss + + A × B × C x + + A × B × C x + + A × B × C + + A × B × C x
12 ancom + + A × B × C x + + A × B × C x + + A × B × C x + + A × B × C x
13 xpundir + A × B + A × B × C = + A × B × C + A × B × C
14 13 imaeq2i + + A × B + A × B × C = + + A × B × C + A × B × C
15 imaundi + + A × B × C + A × B × C = + + A × B × C + + A × B × C
16 14 15 eqtri + + A × B + A × B × C = + + A × B × C + + A × B × C
17 16 sseq1i + + A × B + A × B × C x + + A × B × C + + A × B × C x
18 11 12 17 3bitr4i + + A × B × C x + + A × B × C x + + A × B + A × B × C x
19 18 anbi1i + + A × B × C x + + A × B × C x + A + B × C x + + A × B + A × B × C x + A + B × C x
20 unss + + A × B + A × B × C x + A + B × C x + + A × B + A × B × C + A + B × C x
21 10 19 20 3bitrri + + A × B + A × B × C + A + B × C x + + A × B × C x + + A × B × C x + A + B × C x
22 naddfn + Fn On × On
23 fnfun + Fn On × On Fun +
24 22 23 ax-mp Fun +
25 imassrn + A × B ran +
26 naddf + : On × On On
27 frn + : On × On On ran + On
28 26 27 ax-mp ran + On
29 25 28 sstri + A × B On
30 simpl3 A On B On C On x On C On
31 30 snssd A On B On C On x On C On
32 xpss12 + A × B On C On + A × B × C On × On
33 29 31 32 sylancr A On B On C On x On + A × B × C On × On
34 22 fndmi dom + = On × On
35 33 34 sseqtrrdi A On B On C On x On + A × B × C dom +
36 funimassov Fun + + A × B × C dom + + + A × B × C x p + A × B c C p + c x
37 24 35 36 sylancr A On B On C On x On + + A × B × C x p + A × B c C p + c x
38 oveq2 c = C p + c = p + C
39 38 eleq1d c = C p + c x p + C x
40 39 ralsng C On c C p + c x p + C x
41 30 40 syl A On B On C On x On c C p + c x p + C x
42 41 ralbidv A On B On C On x On p + A × B c C p + c x p + A × B p + C x
43 onss A On A On
44 43 3ad2ant1 A On B On C On A On
45 44 adantr A On B On C On x On A On
46 simpl2 A On B On C On x On B On
47 46 snssd A On B On C On x On B On
48 xpss12 A On B On A × B On × On
49 45 47 48 syl2anc A On B On C On x On A × B On × On
50 oveq1 p = a + b p + C = a + b + C
51 50 eleq1d p = a + b p + C x a + b + C x
52 51 imaeqalov + Fn On × On A × B On × On p + A × B p + C x a A b B a + b + C x
53 22 49 52 sylancr A On B On C On x On p + A × B p + C x a A b B a + b + C x
54 oveq2 b = B a + b = a + B
55 54 oveq1d b = B a + b + C = a + B + C
56 55 eleq1d b = B a + b + C x a + B + C x
57 56 ralsng B On b B a + b + C x a + B + C x
58 46 57 syl A On B On C On x On b B a + b + C x a + B + C x
59 58 ralbidv A On B On C On x On a A b B a + b + C x a A a + B + C x
60 53 59 bitrd A On B On C On x On p + A × B p + C x a A a + B + C x
61 37 42 60 3bitrd A On B On C On x On + + A × B × C x a A a + B + C x
62 imassrn + A × B ran +
63 62 28 sstri + A × B On
64 xpss12 + A × B On C On + A × B × C On × On
65 63 31 64 sylancr A On B On C On x On + A × B × C On × On
66 65 34 sseqtrrdi A On B On C On x On + A × B × C dom +
67 funimassov Fun + + A × B × C dom + + + A × B × C x p + A × B c C p + c x
68 24 66 67 sylancr A On B On C On x On + + A × B × C x p + A × B c C p + c x
69 41 ralbidv A On B On C On x On p + A × B c C p + c x p + A × B p + C x
70 simpl1 A On B On C On x On A On
71 70 snssd A On B On C On x On A On
72 onss B On B On
73 72 3ad2ant2 A On B On C On B On
74 73 adantr A On B On C On x On B On
75 xpss12 A On B On A × B On × On
76 71 74 75 syl2anc A On B On C On x On A × B On × On
77 51 imaeqalov + Fn On × On A × B On × On p + A × B p + C x a A b B a + b + C x
78 22 76 77 sylancr A On B On C On x On p + A × B p + C x a A b B a + b + C x
79 oveq1 a = A a + b = A + b
80 79 oveq1d a = A a + b + C = A + b + C
81 80 eleq1d a = A a + b + C x A + b + C x
82 81 ralbidv a = A b B a + b + C x b B A + b + C x
83 82 ralsng A On a A b B a + b + C x b B A + b + C x
84 70 83 syl A On B On C On x On a A b B a + b + C x b B A + b + C x
85 78 84 bitrd A On B On C On x On p + A × B p + C x b B A + b + C x
86 68 69 85 3bitrd A On B On C On x On + + A × B × C x b B A + b + C x
87 2 adantr A On B On C On x On A + B On
88 87 snssd A On B On C On x On A + B On
89 onss C On C On
90 89 3ad2ant3 A On B On C On C On
91 90 adantr A On B On C On x On C On
92 xpss12 A + B On C On A + B × C On × On
93 88 91 92 syl2anc A On B On C On x On A + B × C On × On
94 93 34 sseqtrrdi A On B On C On x On A + B × C dom +
95 funimassov Fun + A + B × C dom + + A + B × C x a A + B c C a + c x
96 24 94 95 sylancr A On B On C On x On + A + B × C x a A + B c C a + c x
97 ovex A + B V
98 oveq1 a = A + B a + c = A + B + c
99 98 eleq1d a = A + B a + c x A + B + c x
100 99 ralbidv a = A + B c C a + c x c C A + B + c x
101 97 100 ralsn a A + B c C a + c x c C A + B + c x
102 96 101 bitrdi A On B On C On x On + A + B × C x c C A + B + c x
103 61 86 102 3anbi123d A On B On C On x On + + A × B × C x + + A × B × C x + A + B × C x a A a + B + C x b B A + b + C x c C A + B + c x
104 21 103 bitrid A On B On C On x On + + A × B + A × B × C + A + B × C x a A a + B + C x b B A + b + C x c C A + B + c x
105 104 rabbidva A On B On C On x On | + + A × B + A × B × C + A + B × C x = x On | a A a + B + C x b B A + b + C x c C A + B + c x
106 105 inteqd A On B On C On x On | + + A × B + A × B × C + A + B × C x = x On | a A a + B + C x b B A + b + C x c C A + B + c x
107 9 106 eqtrd A On B On C On A + B + C = x On | a A a + B + C x b B A + b + C x c C A + B + c x