Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
|
2 |
|
naddcl |
|
3 |
2
|
3adant1 |
|
4 |
|
intmin |
|
5 |
4
|
eqcomd |
|
6 |
5
|
3ad2ant1 |
|
7 |
|
naddov3 |
|
8 |
7
|
3adant1 |
|
9 |
1 3 6 8
|
naddunif |
|
10 |
|
3anass |
|
11 |
|
unss |
|
12 |
|
ancom |
|
13 |
|
xpundi |
|
14 |
13
|
imaeq2i |
|
15 |
|
imaundi |
|
16 |
14 15
|
eqtri |
|
17 |
16
|
sseq1i |
|
18 |
11 12 17
|
3bitr4i |
|
19 |
18
|
anbi2i |
|
20 |
|
unss |
|
21 |
10 19 20
|
3bitrri |
|
22 |
|
naddfn |
|
23 |
|
fnfun |
|
24 |
22 23
|
ax-mp |
|
25 |
|
onss |
|
26 |
25
|
3ad2ant1 |
|
27 |
3
|
adantr |
|
28 |
27
|
snssd |
|
29 |
|
xpss12 |
|
30 |
26 28 29
|
syl2an2r |
|
31 |
22
|
fndmi |
|
32 |
30 31
|
sseqtrrdi |
|
33 |
|
funimassov |
|
34 |
24 32 33
|
sylancr |
|
35 |
|
ovex |
|
36 |
|
oveq2 |
|
37 |
36
|
eleq1d |
|
38 |
35 37
|
ralsn |
|
39 |
38
|
ralbii |
|
40 |
34 39
|
bitrdi |
|
41 |
|
simpl1 |
|
42 |
41
|
snssd |
|
43 |
|
imassrn |
|
44 |
|
naddf |
|
45 |
|
frn |
|
46 |
44 45
|
ax-mp |
|
47 |
43 46
|
sstri |
|
48 |
|
xpss12 |
|
49 |
42 47 48
|
sylancl |
|
50 |
49 31
|
sseqtrrdi |
|
51 |
|
funimassov |
|
52 |
24 50 51
|
sylancr |
|
53 |
|
oveq1 |
|
54 |
53
|
eleq1d |
|
55 |
54
|
ralbidv |
|
56 |
55
|
ralsng |
|
57 |
41 56
|
syl |
|
58 |
|
onss |
|
59 |
58
|
3ad2ant2 |
|
60 |
|
simpl3 |
|
61 |
60
|
snssd |
|
62 |
|
xpss12 |
|
63 |
59 61 62
|
syl2an2r |
|
64 |
|
oveq2 |
|
65 |
64
|
eleq1d |
|
66 |
65
|
imaeqalov |
|
67 |
22 63 66
|
sylancr |
|
68 |
|
oveq2 |
|
69 |
68
|
oveq2d |
|
70 |
69
|
eleq1d |
|
71 |
70
|
ralsng |
|
72 |
60 71
|
syl |
|
73 |
72
|
ralbidv |
|
74 |
67 73
|
bitrd |
|
75 |
52 57 74
|
3bitrd |
|
76 |
|
imassrn |
|
77 |
76 46
|
sstri |
|
78 |
|
xpss12 |
|
79 |
42 77 78
|
sylancl |
|
80 |
79 31
|
sseqtrrdi |
|
81 |
|
funimassov |
|
82 |
24 80 81
|
sylancr |
|
83 |
54
|
ralbidv |
|
84 |
83
|
ralsng |
|
85 |
41 84
|
syl |
|
86 |
|
simpl2 |
|
87 |
86
|
snssd |
|
88 |
|
onss |
|
89 |
88
|
3ad2ant3 |
|
90 |
89
|
adantr |
|
91 |
|
xpss12 |
|
92 |
87 90 91
|
syl2anc |
|
93 |
65
|
imaeqalov |
|
94 |
22 92 93
|
sylancr |
|
95 |
|
oveq1 |
|
96 |
95
|
oveq2d |
|
97 |
96
|
eleq1d |
|
98 |
97
|
ralbidv |
|
99 |
98
|
ralsng |
|
100 |
86 99
|
syl |
|
101 |
94 100
|
bitrd |
|
102 |
82 85 101
|
3bitrd |
|
103 |
40 75 102
|
3anbi123d |
|
104 |
21 103
|
bitrid |
|
105 |
104
|
rabbidva |
|
106 |
105
|
inteqd |
|
107 |
9 106
|
eqtrd |
|