Metamath Proof Explorer


Theorem naddasslem2

Description: Lemma for naddass . Expand out the expression for natural addition of three arguments. (Contributed by Scott Fenton, 20-Jan-2025)

Ref Expression
Assertion naddasslem2 A On B On C On A + B + C = x On | a A a + B + C x b B A + b + C x c C A + B + c x

Proof

Step Hyp Ref Expression
1 simp1 A On B On C On A On
2 naddcl B On C On B + C On
3 2 3adant1 A On B On C On B + C On
4 intmin A On a On | A a = A
5 4 eqcomd A On A = a On | A a
6 5 3ad2ant1 A On B On C On A = a On | A a
7 naddov3 B On C On B + C = p On | + B × C + B × C p
8 7 3adant1 A On B On C On B + C = p On | + B × C + B × C p
9 1 3 6 8 naddunif A On B On C On A + B + C = x On | + A × B + C + A × + B × C + B × C x
10 3anass + A × B + C x + A × + B × C x + A × + B × C x + A × B + C x + A × + B × C x + A × + B × C x
11 unss + A × + B × C x + A × + B × C x + A × + B × C + A × + B × C x
12 ancom + A × + B × C x + A × + B × C x + A × + B × C x + A × + B × C x
13 xpundi A × + B × C + B × C = A × + B × C A × + B × C
14 13 imaeq2i + A × + B × C + B × C = + A × + B × C A × + B × C
15 imaundi + A × + B × C A × + B × C = + A × + B × C + A × + B × C
16 14 15 eqtri + A × + B × C + B × C = + A × + B × C + A × + B × C
17 16 sseq1i + A × + B × C + B × C x + A × + B × C + A × + B × C x
18 11 12 17 3bitr4i + A × + B × C x + A × + B × C x + A × + B × C + B × C x
19 18 anbi2i + A × B + C x + A × + B × C x + A × + B × C x + A × B + C x + A × + B × C + B × C x
20 unss + A × B + C x + A × + B × C + B × C x + A × B + C + A × + B × C + B × C x
21 10 19 20 3bitrri + A × B + C + A × + B × C + B × C x + A × B + C x + A × + B × C x + A × + B × C x
22 naddfn + Fn On × On
23 fnfun + Fn On × On Fun +
24 22 23 ax-mp Fun +
25 onss A On A On
26 25 3ad2ant1 A On B On C On A On
27 3 adantr A On B On C On x On B + C On
28 27 snssd A On B On C On x On B + C On
29 xpss12 A On B + C On A × B + C On × On
30 26 28 29 syl2an2r A On B On C On x On A × B + C On × On
31 22 fndmi dom + = On × On
32 30 31 sseqtrrdi A On B On C On x On A × B + C dom +
33 funimassov Fun + A × B + C dom + + A × B + C x a A p B + C a + p x
34 24 32 33 sylancr A On B On C On x On + A × B + C x a A p B + C a + p x
35 ovex B + C V
36 oveq2 p = B + C a + p = a + B + C
37 36 eleq1d p = B + C a + p x a + B + C x
38 35 37 ralsn p B + C a + p x a + B + C x
39 38 ralbii a A p B + C a + p x a A a + B + C x
40 34 39 bitrdi A On B On C On x On + A × B + C x a A a + B + C x
41 simpl1 A On B On C On x On A On
42 41 snssd A On B On C On x On A On
43 imassrn + B × C ran +
44 naddf + : On × On On
45 frn + : On × On On ran + On
46 44 45 ax-mp ran + On
47 43 46 sstri + B × C On
48 xpss12 A On + B × C On A × + B × C On × On
49 42 47 48 sylancl A On B On C On x On A × + B × C On × On
50 49 31 sseqtrrdi A On B On C On x On A × + B × C dom +
51 funimassov Fun + A × + B × C dom + + A × + B × C x a A p + B × C a + p x
52 24 50 51 sylancr A On B On C On x On + A × + B × C x a A p + B × C a + p x
53 oveq1 a = A a + p = A + p
54 53 eleq1d a = A a + p x A + p x
55 54 ralbidv a = A p + B × C a + p x p + B × C A + p x
56 55 ralsng A On a A p + B × C a + p x p + B × C A + p x
57 41 56 syl A On B On C On x On a A p + B × C a + p x p + B × C A + p x
58 onss B On B On
59 58 3ad2ant2 A On B On C On B On
60 simpl3 A On B On C On x On C On
61 60 snssd A On B On C On x On C On
62 xpss12 B On C On B × C On × On
63 59 61 62 syl2an2r A On B On C On x On B × C On × On
64 oveq2 p = b + c A + p = A + b + c
65 64 eleq1d p = b + c A + p x A + b + c x
66 65 imaeqalov + Fn On × On B × C On × On p + B × C A + p x b B c C A + b + c x
67 22 63 66 sylancr A On B On C On x On p + B × C A + p x b B c C A + b + c x
68 oveq2 c = C b + c = b + C
69 68 oveq2d c = C A + b + c = A + b + C
70 69 eleq1d c = C A + b + c x A + b + C x
71 70 ralsng C On c C A + b + c x A + b + C x
72 60 71 syl A On B On C On x On c C A + b + c x A + b + C x
73 72 ralbidv A On B On C On x On b B c C A + b + c x b B A + b + C x
74 67 73 bitrd A On B On C On x On p + B × C A + p x b B A + b + C x
75 52 57 74 3bitrd A On B On C On x On + A × + B × C x b B A + b + C x
76 imassrn + B × C ran +
77 76 46 sstri + B × C On
78 xpss12 A On + B × C On A × + B × C On × On
79 42 77 78 sylancl A On B On C On x On A × + B × C On × On
80 79 31 sseqtrrdi A On B On C On x On A × + B × C dom +
81 funimassov Fun + A × + B × C dom + + A × + B × C x a A p + B × C a + p x
82 24 80 81 sylancr A On B On C On x On + A × + B × C x a A p + B × C a + p x
83 54 ralbidv a = A p + B × C a + p x p + B × C A + p x
84 83 ralsng A On a A p + B × C a + p x p + B × C A + p x
85 41 84 syl A On B On C On x On a A p + B × C a + p x p + B × C A + p x
86 simpl2 A On B On C On x On B On
87 86 snssd A On B On C On x On B On
88 onss C On C On
89 88 3ad2ant3 A On B On C On C On
90 89 adantr A On B On C On x On C On
91 xpss12 B On C On B × C On × On
92 87 90 91 syl2anc A On B On C On x On B × C On × On
93 65 imaeqalov + Fn On × On B × C On × On p + B × C A + p x b B c C A + b + c x
94 22 92 93 sylancr A On B On C On x On p + B × C A + p x b B c C A + b + c x
95 oveq1 b = B b + c = B + c
96 95 oveq2d b = B A + b + c = A + B + c
97 96 eleq1d b = B A + b + c x A + B + c x
98 97 ralbidv b = B c C A + b + c x c C A + B + c x
99 98 ralsng B On b B c C A + b + c x c C A + B + c x
100 86 99 syl A On B On C On x On b B c C A + b + c x c C A + B + c x
101 94 100 bitrd A On B On C On x On p + B × C A + p x c C A + B + c x
102 82 85 101 3bitrd A On B On C On x On + A × + B × C x c C A + B + c x
103 40 75 102 3anbi123d A On B On C On x On + A × B + C x + A × + B × C x + A × + B × C x a A a + B + C x b B A + b + C x c C A + B + c x
104 21 103 bitrid A On B On C On x On + A × B + C + A × + B × C + B × C x a A a + B + C x b B A + b + C x c C A + B + c x
105 104 rabbidva A On B On C On x On | + A × B + C + A × + B × C + B × C x = x On | a A a + B + C x b B A + b + C x c C A + B + c x
106 105 inteqd A On B On C On x On | + A × B + C + A × + B × C + B × C x = x On | a A a + B + C x b B A + b + C x c C A + B + c x
107 9 106 eqtrd A On B On C On A + B + C = x On | a A a + B + C x b B A + b + C x c C A + B + c x