Metamath Proof Explorer


Theorem naddcllem

Description: Lemma for ordinal addition closure. (Contributed by Scott Fenton, 26-Aug-2024)

Ref Expression
Assertion naddcllem A On B On A + B On A + B = x On | + A × B x + A × B x

Proof

Step Hyp Ref Expression
1 oveq1 a = c a + b = c + b
2 1 eleq1d a = c a + b On c + b On
3 sneq a = c a = c
4 3 xpeq1d a = c a × b = c × b
5 4 imaeq2d a = c + a × b = + c × b
6 5 sseq1d a = c + a × b x + c × b x
7 xpeq1 a = c a × b = c × b
8 7 imaeq2d a = c + a × b = + c × b
9 8 sseq1d a = c + a × b x + c × b x
10 6 9 anbi12d a = c + a × b x + a × b x + c × b x + c × b x
11 10 rabbidv a = c x On | + a × b x + a × b x = x On | + c × b x + c × b x
12 11 inteqd a = c x On | + a × b x + a × b x = x On | + c × b x + c × b x
13 1 12 eqeq12d a = c a + b = x On | + a × b x + a × b x c + b = x On | + c × b x + c × b x
14 2 13 anbi12d a = c a + b On a + b = x On | + a × b x + a × b x c + b On c + b = x On | + c × b x + c × b x
15 oveq2 b = d c + b = c + d
16 15 eleq1d b = d c + b On c + d On
17 xpeq2 b = d c × b = c × d
18 17 imaeq2d b = d + c × b = + c × d
19 18 sseq1d b = d + c × b x + c × d x
20 sneq b = d b = d
21 20 xpeq2d b = d c × b = c × d
22 21 imaeq2d b = d + c × b = + c × d
23 22 sseq1d b = d + c × b x + c × d x
24 19 23 anbi12d b = d + c × b x + c × b x + c × d x + c × d x
25 24 rabbidv b = d x On | + c × b x + c × b x = x On | + c × d x + c × d x
26 25 inteqd b = d x On | + c × b x + c × b x = x On | + c × d x + c × d x
27 15 26 eqeq12d b = d c + b = x On | + c × b x + c × b x c + d = x On | + c × d x + c × d x
28 16 27 anbi12d b = d c + b On c + b = x On | + c × b x + c × b x c + d On c + d = x On | + c × d x + c × d x
29 oveq1 a = c a + d = c + d
30 29 eleq1d a = c a + d On c + d On
31 3 xpeq1d a = c a × d = c × d
32 31 imaeq2d a = c + a × d = + c × d
33 32 sseq1d a = c + a × d x + c × d x
34 xpeq1 a = c a × d = c × d
35 34 imaeq2d a = c + a × d = + c × d
36 35 sseq1d a = c + a × d x + c × d x
37 33 36 anbi12d a = c + a × d x + a × d x + c × d x + c × d x
38 37 rabbidv a = c x On | + a × d x + a × d x = x On | + c × d x + c × d x
39 38 inteqd a = c x On | + a × d x + a × d x = x On | + c × d x + c × d x
40 29 39 eqeq12d a = c a + d = x On | + a × d x + a × d x c + d = x On | + c × d x + c × d x
41 30 40 anbi12d a = c a + d On a + d = x On | + a × d x + a × d x c + d On c + d = x On | + c × d x + c × d x
42 oveq1 a = A a + b = A + b
43 42 eleq1d a = A a + b On A + b On
44 sneq a = A a = A
45 44 xpeq1d a = A a × b = A × b
46 45 imaeq2d a = A + a × b = + A × b
47 46 sseq1d a = A + a × b x + A × b x
48 xpeq1 a = A a × b = A × b
49 48 imaeq2d a = A + a × b = + A × b
50 49 sseq1d a = A + a × b x + A × b x
51 47 50 anbi12d a = A + a × b x + a × b x + A × b x + A × b x
52 51 rabbidv a = A x On | + a × b x + a × b x = x On | + A × b x + A × b x
53 52 inteqd a = A x On | + a × b x + a × b x = x On | + A × b x + A × b x
54 42 53 eqeq12d a = A a + b = x On | + a × b x + a × b x A + b = x On | + A × b x + A × b x
55 43 54 anbi12d a = A a + b On a + b = x On | + a × b x + a × b x A + b On A + b = x On | + A × b x + A × b x
56 oveq2 b = B A + b = A + B
57 56 eleq1d b = B A + b On A + B On
58 xpeq2 b = B A × b = A × B
59 58 imaeq2d b = B + A × b = + A × B
60 59 sseq1d b = B + A × b x + A × B x
61 sneq b = B b = B
62 61 xpeq2d b = B A × b = A × B
63 62 imaeq2d b = B + A × b = + A × B
64 63 sseq1d b = B + A × b x + A × B x
65 60 64 anbi12d b = B + A × b x + A × b x + A × B x + A × B x
66 65 rabbidv b = B x On | + A × b x + A × b x = x On | + A × B x + A × B x
67 66 inteqd b = B x On | + A × b x + A × b x = x On | + A × B x + A × B x
68 56 67 eqeq12d b = B A + b = x On | + A × b x + A × b x A + B = x On | + A × B x + A × B x
69 57 68 anbi12d b = B A + b On A + b = x On | + A × b x + A × b x A + B On A + B = x On | + A × B x + A × B x
70 simpl c + b On c + b = x On | + c × b x + c × b x c + b On
71 70 ralimi c a c + b On c + b = x On | + c × b x + c × b x c a c + b On
72 71 3ad2ant2 c a d b c + d On c + d = x On | + c × d x + c × d x c a c + b On c + b = x On | + c × b x + c × b x d b a + d On a + d = x On | + a × d x + a × d x c a c + b On
73 simpl a + d On a + d = x On | + a × d x + a × d x a + d On
74 73 ralimi d b a + d On a + d = x On | + a × d x + a × d x d b a + d On
75 74 3ad2ant3 c a d b c + d On c + d = x On | + c × d x + c × d x c a c + b On c + b = x On | + c × b x + c × b x d b a + d On a + d = x On | + a × d x + a × d x d b a + d On
76 72 75 jca c a d b c + d On c + d = x On | + c × d x + c × d x c a c + b On c + b = x On | + c × b x + c × b x d b a + d On a + d = x On | + a × d x + a × d x c a c + b On d b a + d On
77 df-nadd + = frecs p q | p On × On q On × On 1 st p E 1 st q 1 st p = 1 st q 2 nd p E 2 nd q 2 nd p = 2 nd q p q On × On t V , f V x On | f 1 st t × 2 nd t x f 1 st t × 2 nd t x
78 77 on2recsov a On b On a + b = a b t V , f V x On | f 1 st t × 2 nd t x f 1 st t × 2 nd t x + suc a × suc b a b
79 78 adantr a On b On c a c + b On d b a + d On a + b = a b t V , f V x On | f 1 st t × 2 nd t x f 1 st t × 2 nd t x + suc a × suc b a b
80 opex a b V
81 naddfn + Fn On × On
82 fnfun + Fn On × On Fun +
83 81 82 ax-mp Fun +
84 vex a V
85 84 sucex suc a V
86 vex b V
87 86 sucex suc b V
88 85 87 xpex suc a × suc b V
89 88 difexi suc a × suc b a b V
90 resfunexg Fun + suc a × suc b a b V + suc a × suc b a b V
91 83 89 90 mp2an + suc a × suc b a b V
92 eloni b On Ord b
93 92 ad2antlr a On b On c a c + b On d b a + d On Ord b
94 ordirr Ord b ¬ b b
95 93 94 syl a On b On c a c + b On d b a + d On ¬ b b
96 95 olcd a On b On c a c + b On d b a + d On ¬ a a ¬ b b
97 ianor ¬ a a b b ¬ a a ¬ b b
98 opelxp a b a × b a a b b
99 97 98 xchnxbir ¬ a b a × b ¬ a a ¬ b b
100 96 99 sylibr a On b On c a c + b On d b a + d On ¬ a b a × b
101 84 sucid a suc a
102 snssi a suc a a suc a
103 101 102 ax-mp a suc a
104 sssucid b suc b
105 xpss12 a suc a b suc b a × b suc a × suc b
106 103 104 105 mp2an a × b suc a × suc b
107 ssdifsn a × b suc a × suc b a b a × b suc a × suc b ¬ a b a × b
108 106 107 mpbiran a × b suc a × suc b a b ¬ a b a × b
109 100 108 sylibr a On b On c a c + b On d b a + d On a × b suc a × suc b a b
110 resima2 a × b suc a × suc b a b + suc a × suc b a b a × b = + a × b
111 109 110 syl a On b On c a c + b On d b a + d On + suc a × suc b a b a × b = + a × b
112 111 sseq1d a On b On c a c + b On d b a + d On + suc a × suc b a b a × b x + a × b x
113 eloni a On Ord a
114 113 ad2antrr a On b On c a c + b On d b a + d On Ord a
115 ordirr Ord a ¬ a a
116 114 115 syl a On b On c a c + b On d b a + d On ¬ a a
117 116 orcd a On b On c a c + b On d b a + d On ¬ a a ¬ b b
118 ianor ¬ a a b b ¬ a a ¬ b b
119 opelxp a b a × b a a b b
120 118 119 xchnxbir ¬ a b a × b ¬ a a ¬ b b
121 117 120 sylibr a On b On c a c + b On d b a + d On ¬ a b a × b
122 sssucid a suc a
123 86 sucid b suc b
124 snssi b suc b b suc b
125 123 124 ax-mp b suc b
126 xpss12 a suc a b suc b a × b suc a × suc b
127 122 125 126 mp2an a × b suc a × suc b
128 ssdifsn a × b suc a × suc b a b a × b suc a × suc b ¬ a b a × b
129 127 128 mpbiran a × b suc a × suc b a b ¬ a b a × b
130 121 129 sylibr a On b On c a c + b On d b a + d On a × b suc a × suc b a b
131 resima2 a × b suc a × suc b a b + suc a × suc b a b a × b = + a × b
132 130 131 syl a On b On c a c + b On d b a + d On + suc a × suc b a b a × b = + a × b
133 132 sseq1d a On b On c a c + b On d b a + d On + suc a × suc b a b a × b x + a × b x
134 112 133 anbi12d a On b On c a c + b On d b a + d On + suc a × suc b a b a × b x + suc a × suc b a b a × b x + a × b x + a × b x
135 134 rabbidv a On b On c a c + b On d b a + d On x On | + suc a × suc b a b a × b x + suc a × suc b a b a × b x = x On | + a × b x + a × b x
136 135 inteqd a On b On c a c + b On d b a + d On x On | + suc a × suc b a b a × b x + suc a × suc b a b a × b x = x On | + a × b x + a × b x
137 simprr a On b On c a c + b On d b a + d On d b a + d On
138 oveq1 t = a t + d = a + d
139 138 eleq1d t = a t + d On a + d On
140 139 ralbidv t = a d b t + d On d b a + d On
141 84 140 ralsn t a d b t + d On d b a + d On
142 137 141 sylibr a On b On c a c + b On d b a + d On t a d b t + d On
143 snssi a On a On
144 onss b On b On
145 xpss12 a On b On a × b On × On
146 143 144 145 syl2an a On b On a × b On × On
147 146 adantr a On b On c a c + b On d b a + d On a × b On × On
148 81 fndmi dom + = On × On
149 147 148 sseqtrrdi a On b On c a c + b On d b a + d On a × b dom +
150 funimassov Fun + a × b dom + + a × b On t a d b t + d On
151 83 149 150 sylancr a On b On c a c + b On d b a + d On + a × b On t a d b t + d On
152 142 151 mpbird a On b On c a c + b On d b a + d On + a × b On
153 simprl a On b On c a c + b On d b a + d On c a c + b On
154 oveq2 t = b c + t = c + b
155 154 eleq1d t = b c + t On c + b On
156 86 155 ralsn t b c + t On c + b On
157 156 ralbii c a t b c + t On c a c + b On
158 153 157 sylibr a On b On c a c + b On d b a + d On c a t b c + t On
159 onss a On a On
160 snssi b On b On
161 xpss12 a On b On a × b On × On
162 159 160 161 syl2an a On b On a × b On × On
163 162 adantr a On b On c a c + b On d b a + d On a × b On × On
164 163 148 sseqtrrdi a On b On c a c + b On d b a + d On a × b dom +
165 funimassov Fun + a × b dom + + a × b On c a t b c + t On
166 83 164 165 sylancr a On b On c a c + b On d b a + d On + a × b On c a t b c + t On
167 158 166 mpbird a On b On c a c + b On d b a + d On + a × b On
168 152 167 unssd a On b On c a c + b On d b a + d On + a × b + a × b On
169 ssorduni + a × b + a × b On Ord + a × b + a × b
170 168 169 syl a On b On c a c + b On d b a + d On Ord + a × b + a × b
171 vsnex a V
172 171 86 xpex a × b V
173 funimaexg Fun + a × b V + a × b V
174 83 172 173 mp2an + a × b V
175 vsnex b V
176 84 175 xpex a × b V
177 funimaexg Fun + a × b V + a × b V
178 83 176 177 mp2an + a × b V
179 174 178 unex + a × b + a × b V
180 179 uniex + a × b + a × b V
181 180 elon + a × b + a × b On Ord + a × b + a × b
182 170 181 sylibr a On b On c a c + b On d b a + d On + a × b + a × b On
183 onsucb + a × b + a × b On suc + a × b + a × b On
184 182 183 sylib a On b On c a c + b On d b a + d On suc + a × b + a × b On
185 onsucuni + a × b + a × b On + a × b + a × b suc + a × b + a × b
186 168 185 syl a On b On c a c + b On d b a + d On + a × b + a × b suc + a × b + a × b
187 186 unssad a On b On c a c + b On d b a + d On + a × b suc + a × b + a × b
188 186 unssbd a On b On c a c + b On d b a + d On + a × b suc + a × b + a × b
189 sseq2 x = suc + a × b + a × b + a × b x + a × b suc + a × b + a × b
190 sseq2 x = suc + a × b + a × b + a × b x + a × b suc + a × b + a × b
191 189 190 anbi12d x = suc + a × b + a × b + a × b x + a × b x + a × b suc + a × b + a × b + a × b suc + a × b + a × b
192 191 rspcev suc + a × b + a × b On + a × b suc + a × b + a × b + a × b suc + a × b + a × b x On + a × b x + a × b x
193 184 187 188 192 syl12anc a On b On c a c + b On d b a + d On x On + a × b x + a × b x
194 onintrab2 x On + a × b x + a × b x x On | + a × b x + a × b x On
195 193 194 sylib a On b On c a c + b On d b a + d On x On | + a × b x + a × b x On
196 136 195 eqeltrd a On b On c a c + b On d b a + d On x On | + suc a × suc b a b a × b x + suc a × suc b a b a × b x On
197 84 86 op1std t = a b 1 st t = a
198 197 sneqd t = a b 1 st t = a
199 84 86 op2ndd t = a b 2 nd t = b
200 198 199 xpeq12d t = a b 1 st t × 2 nd t = a × b
201 200 imaeq2d t = a b f 1 st t × 2 nd t = f a × b
202 201 sseq1d t = a b f 1 st t × 2 nd t x f a × b x
203 199 sneqd t = a b 2 nd t = b
204 197 203 xpeq12d t = a b 1 st t × 2 nd t = a × b
205 204 imaeq2d t = a b f 1 st t × 2 nd t = f a × b
206 205 sseq1d t = a b f 1 st t × 2 nd t x f a × b x
207 202 206 anbi12d t = a b f 1 st t × 2 nd t x f 1 st t × 2 nd t x f a × b x f a × b x
208 207 rabbidv t = a b x On | f 1 st t × 2 nd t x f 1 st t × 2 nd t x = x On | f a × b x f a × b x
209 208 inteqd t = a b x On | f 1 st t × 2 nd t x f 1 st t × 2 nd t x = x On | f a × b x f a × b x
210 imaeq1 f = + suc a × suc b a b f a × b = + suc a × suc b a b a × b
211 210 sseq1d f = + suc a × suc b a b f a × b x + suc a × suc b a b a × b x
212 imaeq1 f = + suc a × suc b a b f a × b = + suc a × suc b a b a × b
213 212 sseq1d f = + suc a × suc b a b f a × b x + suc a × suc b a b a × b x
214 211 213 anbi12d f = + suc a × suc b a b f a × b x f a × b x + suc a × suc b a b a × b x + suc a × suc b a b a × b x
215 214 rabbidv f = + suc a × suc b a b x On | f a × b x f a × b x = x On | + suc a × suc b a b a × b x + suc a × suc b a b a × b x
216 215 inteqd f = + suc a × suc b a b x On | f a × b x f a × b x = x On | + suc a × suc b a b a × b x + suc a × suc b a b a × b x
217 eqid t V , f V x On | f 1 st t × 2 nd t x f 1 st t × 2 nd t x = t V , f V x On | f 1 st t × 2 nd t x f 1 st t × 2 nd t x
218 209 216 217 ovmpog a b V + suc a × suc b a b V x On | + suc a × suc b a b a × b x + suc a × suc b a b a × b x On a b t V , f V x On | f 1 st t × 2 nd t x f 1 st t × 2 nd t x + suc a × suc b a b = x On | + suc a × suc b a b a × b x + suc a × suc b a b a × b x
219 80 91 196 218 mp3an12i a On b On c a c + b On d b a + d On a b t V , f V x On | f 1 st t × 2 nd t x f 1 st t × 2 nd t x + suc a × suc b a b = x On | + suc a × suc b a b a × b x + suc a × suc b a b a × b x
220 79 219 136 3eqtrd a On b On c a c + b On d b a + d On a + b = x On | + a × b x + a × b x
221 220 195 eqeltrd a On b On c a c + b On d b a + d On a + b On
222 221 220 jca a On b On c a c + b On d b a + d On a + b On a + b = x On | + a × b x + a × b x
223 222 ex a On b On c a c + b On d b a + d On a + b On a + b = x On | + a × b x + a × b x
224 76 223 syl5 a On b On c a d b c + d On c + d = x On | + c × d x + c × d x c a c + b On c + b = x On | + c × b x + c × b x d b a + d On a + d = x On | + a × d x + a × d x a + b On a + b = x On | + a × b x + a × b x
225 14 28 41 55 69 224 on2ind A On B On A + B On A + B = x On | + A × B x + A × B x