Metamath Proof Explorer


Theorem naddcom

Description: Natural addition commutes. (Contributed by Scott Fenton, 26-Aug-2024)

Ref Expression
Assertion naddcom A On B On A + B = B + A

Proof

Step Hyp Ref Expression
1 oveq1 a = c a + b = c + b
2 oveq2 a = c b + a = b + c
3 1 2 eqeq12d a = c a + b = b + a c + b = b + c
4 oveq2 b = d c + b = c + d
5 oveq1 b = d b + c = d + c
6 4 5 eqeq12d b = d c + b = b + c c + d = d + c
7 oveq1 a = c a + d = c + d
8 oveq2 a = c d + a = d + c
9 7 8 eqeq12d a = c a + d = d + a c + d = d + c
10 oveq1 a = A a + b = A + b
11 oveq2 a = A b + a = b + A
12 10 11 eqeq12d a = A a + b = b + a A + b = b + A
13 oveq2 b = B A + b = A + B
14 oveq1 b = B b + A = B + A
15 13 14 eqeq12d b = B A + b = b + A A + B = B + A
16 eleq1 a + d = d + a a + d x d + a x
17 16 ralimi d b a + d = d + a d b a + d x d + a x
18 ralbi d b a + d x d + a x d b a + d x d b d + a x
19 17 18 syl d b a + d = d + a d b a + d x d b d + a x
20 19 3ad2ant3 c a d b c + d = d + c c a c + b = b + c d b a + d = d + a d b a + d x d b d + a x
21 20 adantl a On b On c a d b c + d = d + c c a c + b = b + c d b a + d = d + a d b a + d x d b d + a x
22 eleq1 c + b = b + c c + b x b + c x
23 22 ralimi c a c + b = b + c c a c + b x b + c x
24 ralbi c a c + b x b + c x c a c + b x c a b + c x
25 23 24 syl c a c + b = b + c c a c + b x c a b + c x
26 25 3ad2ant2 c a d b c + d = d + c c a c + b = b + c d b a + d = d + a c a c + b x c a b + c x
27 26 adantl a On b On c a d b c + d = d + c c a c + b = b + c d b a + d = d + a c a c + b x c a b + c x
28 21 27 anbi12d a On b On c a d b c + d = d + c c a c + b = b + c d b a + d = d + a d b a + d x c a c + b x d b d + a x c a b + c x
29 28 biancomd a On b On c a d b c + d = d + c c a c + b = b + c d b a + d = d + a d b a + d x c a c + b x c a b + c x d b d + a x
30 29 rabbidv a On b On c a d b c + d = d + c c a c + b = b + c d b a + d = d + a x On | d b a + d x c a c + b x = x On | c a b + c x d b d + a x
31 30 inteqd a On b On c a d b c + d = d + c c a c + b = b + c d b a + d = d + a x On | d b a + d x c a c + b x = x On | c a b + c x d b d + a x
32 naddov2 a On b On a + b = x On | d b a + d x c a c + b x
33 32 adantr a On b On c a d b c + d = d + c c a c + b = b + c d b a + d = d + a a + b = x On | d b a + d x c a c + b x
34 naddov2 b On a On b + a = x On | c a b + c x d b d + a x
35 34 ancoms a On b On b + a = x On | c a b + c x d b d + a x
36 35 adantr a On b On c a d b c + d = d + c c a c + b = b + c d b a + d = d + a b + a = x On | c a b + c x d b d + a x
37 31 33 36 3eqtr4d a On b On c a d b c + d = d + c c a c + b = b + c d b a + d = d + a a + b = b + a
38 37 ex a On b On c a d b c + d = d + c c a c + b = b + c d b a + d = d + a a + b = b + a
39 3 6 9 12 15 38 on2ind A On B On A + B = B + A