Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
|
2 |
|
oveq2 |
|
3 |
1 2
|
eqeq12d |
|
4 |
|
oveq2 |
|
5 |
|
oveq1 |
|
6 |
4 5
|
eqeq12d |
|
7 |
|
oveq1 |
|
8 |
|
oveq2 |
|
9 |
7 8
|
eqeq12d |
|
10 |
|
oveq1 |
|
11 |
|
oveq2 |
|
12 |
10 11
|
eqeq12d |
|
13 |
|
oveq2 |
|
14 |
|
oveq1 |
|
15 |
13 14
|
eqeq12d |
|
16 |
|
eleq1 |
|
17 |
16
|
ralimi |
|
18 |
|
ralbi |
|
19 |
17 18
|
syl |
|
20 |
19
|
3ad2ant3 |
|
21 |
20
|
adantl |
|
22 |
|
eleq1 |
|
23 |
22
|
ralimi |
|
24 |
|
ralbi |
|
25 |
23 24
|
syl |
|
26 |
25
|
3ad2ant2 |
|
27 |
26
|
adantl |
|
28 |
21 27
|
anbi12d |
|
29 |
28
|
biancomd |
|
30 |
29
|
rabbidv |
|
31 |
30
|
inteqd |
|
32 |
|
naddov2 |
|
33 |
32
|
adantr |
|
34 |
|
naddov2 |
|
35 |
34
|
ancoms |
|
36 |
35
|
adantr |
|
37 |
31 33 36
|
3eqtr4d |
|
38 |
37
|
ex |
|
39 |
3 6 9 12 15 38
|
on2ind |
|