Metamath Proof Explorer


Theorem naddelim

Description: Ordinal less-than is preserved by natural addition. (Contributed by Scott Fenton, 9-Sep-2024)

Ref Expression
Assertion naddelim A On B On C On A B A + C B + C

Proof

Step Hyp Ref Expression
1 oveq1 b = A b + C = A + C
2 1 eleq1d b = A b + C x A + C x
3 2 rspcv A B b B b + C x A + C x
4 3 ad2antlr A On B On C On A B x On b B b + C x A + C x
5 4 adantld A On B On C On A B x On c C B + c x b B b + C x A + C x
6 5 ralrimiva A On B On C On A B x On c C B + c x b B b + C x A + C x
7 ovex A + C V
8 7 elintrab A + C x On | c C B + c x b B b + C x x On c C B + c x b B b + C x A + C x
9 6 8 sylibr A On B On C On A B A + C x On | c C B + c x b B b + C x
10 naddov2 B On C On B + C = x On | c C B + c x b B b + C x
11 10 3adant1 A On B On C On B + C = x On | c C B + c x b B b + C x
12 11 adantr A On B On C On A B B + C = x On | c C B + c x b B b + C x
13 9 12 eleqtrrd A On B On C On A B A + C B + C
14 13 ex A On B On C On A B A + C B + C