Metamath Proof Explorer


Theorem naddf

Description: Function statement for natural addition. (Contributed by Scott Fenton, 20-Jan-2025)

Ref Expression
Assertion naddf + : On × On On

Proof

Step Hyp Ref Expression
1 naddfn + Fn On × On
2 naddcl y On z On y + z On
3 2 rgen2 y On z On y + z On
4 fveq2 x = y z + x = + y z
5 df-ov y + z = + y z
6 4 5 eqtr4di x = y z + x = y + z
7 6 eleq1d x = y z + x On y + z On
8 7 ralxp x On × On + x On y On z On y + z On
9 3 8 mpbir x On × On + x On
10 ffnfv + : On × On On + Fn On × On x On × On + x On
11 1 9 10 mpbir2an + : On × On On