Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Natural addition
naddf
Next ⟩
naddcom
Metamath Proof Explorer
Ascii
Unicode
Theorem
naddf
Description:
Function statement for natural addition.
(Contributed by
Scott Fenton
, 20-Jan-2025)
Ref
Expression
Assertion
naddf
⊢
+
:
On
×
On
⟶
On
Proof
Step
Hyp
Ref
Expression
1
naddfn
⊢
+
Fn
On
×
On
2
naddcl
⊢
y
∈
On
∧
z
∈
On
→
y
+
z
∈
On
3
2
rgen2
⊢
∀
y
∈
On
∀
z
∈
On
y
+
z
∈
On
4
fveq2
⊢
x
=
y
z
→
+
⁡
x
=
+
⁡
y
z
5
df-ov
⊢
y
+
z
=
+
⁡
y
z
6
4
5
eqtr4di
⊢
x
=
y
z
→
+
⁡
x
=
y
+
z
7
6
eleq1d
⊢
x
=
y
z
→
+
⁡
x
∈
On
↔
y
+
z
∈
On
8
7
ralxp
⊢
∀
x
∈
On
×
On
+
⁡
x
∈
On
↔
∀
y
∈
On
∀
z
∈
On
y
+
z
∈
On
9
3
8
mpbir
⊢
∀
x
∈
On
×
On
+
⁡
x
∈
On
10
ffnfv
⊢
+
:
On
×
On
⟶
On
↔
+
Fn
On
×
On
∧
∀
x
∈
On
×
On
+
⁡
x
∈
On
11
1
9
10
mpbir2an
⊢
+
:
On
×
On
⟶
On