Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Natural addition
naddov
Next ⟩
naddov2
Metamath Proof Explorer
Ascii
Unicode
Theorem
naddov
Description:
The value of natural addition.
(Contributed by
Scott Fenton
, 26-Aug-2024)
Ref
Expression
Assertion
naddov
⊢
A
∈
On
∧
B
∈
On
→
A
+
B
=
⋂
x
∈
On
|
+
A
×
B
⊆
x
∧
+
A
×
B
⊆
x
Proof
Step
Hyp
Ref
Expression
1
naddcllem
⊢
A
∈
On
∧
B
∈
On
→
A
+
B
∈
On
∧
A
+
B
=
⋂
x
∈
On
|
+
A
×
B
⊆
x
∧
+
A
×
B
⊆
x
2
1
simprd
⊢
A
∈
On
∧
B
∈
On
→
A
+
B
=
⋂
x
∈
On
|
+
A
×
B
⊆
x
∧
+
A
×
B
⊆
x